Properties

Label 2-150-75.23-c1-0-4
Degree $2$
Conductor $150$
Sign $0.736 - 0.676i$
Analytic cond. $1.19775$
Root an. cond. $1.09442$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.987 + 0.156i)2-s + (0.0565 + 1.73i)3-s + (0.951 + 0.309i)4-s + (1.48 − 1.66i)5-s + (−0.214 + 1.71i)6-s + (−1.08 + 1.08i)7-s + (0.891 + 0.453i)8-s + (−2.99 + 0.195i)9-s + (1.73 − 1.41i)10-s + (−1.61 − 2.21i)11-s + (−0.481 + 1.66i)12-s + (0.355 + 2.24i)13-s + (−1.24 + 0.903i)14-s + (2.97 + 2.48i)15-s + (0.809 + 0.587i)16-s + (2.77 − 5.44i)17-s + ⋯
L(s)  = 1  + (0.698 + 0.110i)2-s + (0.0326 + 0.999i)3-s + (0.475 + 0.154i)4-s + (0.665 − 0.746i)5-s + (−0.0877 + 0.701i)6-s + (−0.410 + 0.410i)7-s + (0.315 + 0.160i)8-s + (−0.997 + 0.0653i)9-s + (0.547 − 0.447i)10-s + (−0.486 − 0.669i)11-s + (−0.138 + 0.480i)12-s + (0.0985 + 0.622i)13-s + (−0.332 + 0.241i)14-s + (0.767 + 0.641i)15-s + (0.202 + 0.146i)16-s + (0.673 − 1.32i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.736 - 0.676i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.736 - 0.676i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.736 - 0.676i$
Analytic conductor: \(1.19775\)
Root analytic conductor: \(1.09442\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1/2),\ 0.736 - 0.676i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.53878 + 0.599636i\)
\(L(\frac12)\) \(\approx\) \(1.53878 + 0.599636i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.987 - 0.156i)T \)
3 \( 1 + (-0.0565 - 1.73i)T \)
5 \( 1 + (-1.48 + 1.66i)T \)
good7 \( 1 + (1.08 - 1.08i)T - 7iT^{2} \)
11 \( 1 + (1.61 + 2.21i)T + (-3.39 + 10.4i)T^{2} \)
13 \( 1 + (-0.355 - 2.24i)T + (-12.3 + 4.01i)T^{2} \)
17 \( 1 + (-2.77 + 5.44i)T + (-9.99 - 13.7i)T^{2} \)
19 \( 1 + (4.05 - 1.31i)T + (15.3 - 11.1i)T^{2} \)
23 \( 1 + (0.805 - 5.08i)T + (-21.8 - 7.10i)T^{2} \)
29 \( 1 + (-2.37 + 7.29i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (1.85 + 5.71i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (3.29 - 0.521i)T + (35.1 - 11.4i)T^{2} \)
41 \( 1 + (5.36 - 7.38i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (-6.65 - 6.65i)T + 43iT^{2} \)
47 \( 1 + (-2.15 + 1.09i)T + (27.6 - 38.0i)T^{2} \)
53 \( 1 + (-0.199 - 0.391i)T + (-31.1 + 42.8i)T^{2} \)
59 \( 1 + (-5.86 - 4.26i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (8.14 - 5.91i)T + (18.8 - 58.0i)T^{2} \)
67 \( 1 + (-5.28 - 2.69i)T + (39.3 + 54.2i)T^{2} \)
71 \( 1 + (5.89 + 1.91i)T + (57.4 + 41.7i)T^{2} \)
73 \( 1 + (-10.2 - 1.62i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (-6.06 - 1.97i)T + (63.9 + 46.4i)T^{2} \)
83 \( 1 + (6.92 + 3.52i)T + (48.7 + 67.1i)T^{2} \)
89 \( 1 + (8.12 - 5.90i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (-5.51 - 10.8i)T + (-57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39778635094597024147432920806, −12.13633407028448576477755569168, −11.27105844921607857728026243167, −9.949824916641642350824766350524, −9.234216240543220211262076510219, −8.048579789289619341350114297945, −6.13877060818899774196333685312, −5.39305553813788925865544234080, −4.23157133730680949644448647605, −2.71175555699623959022338551693, 2.04730711244208248663716876959, 3.39690811089426487732510336894, 5.39034717897037561498767180784, 6.48893133163980359591370915373, 7.19895136074875159110147000308, 8.550246524411396943313348505523, 10.36032668383931714698006270223, 10.72933474886312101053405921466, 12.54203760721863677547183627306, 12.66623431900273693574894987718

Graph of the $Z$-function along the critical line