Properties

Label 2-150-75.23-c1-0-0
Degree $2$
Conductor $150$
Sign $-0.0494 - 0.998i$
Analytic cond. $1.19775$
Root an. cond. $1.09442$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.987 − 0.156i)2-s + (−1.36 − 1.06i)3-s + (0.951 + 0.309i)4-s + (−1.48 + 1.66i)5-s + (1.18 + 1.26i)6-s + (−1.08 + 1.08i)7-s + (−0.891 − 0.453i)8-s + (0.738 + 2.90i)9-s + (1.73 − 1.41i)10-s + (1.61 + 2.21i)11-s + (−0.971 − 1.43i)12-s + (0.355 + 2.24i)13-s + (1.24 − 0.903i)14-s + (3.80 − 0.697i)15-s + (0.809 + 0.587i)16-s + (−2.77 + 5.44i)17-s + ⋯
L(s)  = 1  + (−0.698 − 0.110i)2-s + (−0.789 − 0.613i)3-s + (0.475 + 0.154i)4-s + (−0.665 + 0.746i)5-s + (0.483 + 0.516i)6-s + (−0.410 + 0.410i)7-s + (−0.315 − 0.160i)8-s + (0.246 + 0.969i)9-s + (0.547 − 0.447i)10-s + (0.486 + 0.669i)11-s + (−0.280 − 0.413i)12-s + (0.0985 + 0.622i)13-s + (0.332 − 0.241i)14-s + (0.983 − 0.180i)15-s + (0.202 + 0.146i)16-s + (−0.673 + 1.32i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0494 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0494 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.0494 - 0.998i$
Analytic conductor: \(1.19775\)
Root analytic conductor: \(1.09442\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1/2),\ -0.0494 - 0.998i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.267825 + 0.281415i\)
\(L(\frac12)\) \(\approx\) \(0.267825 + 0.281415i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.987 + 0.156i)T \)
3 \( 1 + (1.36 + 1.06i)T \)
5 \( 1 + (1.48 - 1.66i)T \)
good7 \( 1 + (1.08 - 1.08i)T - 7iT^{2} \)
11 \( 1 + (-1.61 - 2.21i)T + (-3.39 + 10.4i)T^{2} \)
13 \( 1 + (-0.355 - 2.24i)T + (-12.3 + 4.01i)T^{2} \)
17 \( 1 + (2.77 - 5.44i)T + (-9.99 - 13.7i)T^{2} \)
19 \( 1 + (4.05 - 1.31i)T + (15.3 - 11.1i)T^{2} \)
23 \( 1 + (-0.805 + 5.08i)T + (-21.8 - 7.10i)T^{2} \)
29 \( 1 + (2.37 - 7.29i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (1.85 + 5.71i)T + (-25.0 + 18.2i)T^{2} \)
37 \( 1 + (3.29 - 0.521i)T + (35.1 - 11.4i)T^{2} \)
41 \( 1 + (-5.36 + 7.38i)T + (-12.6 - 38.9i)T^{2} \)
43 \( 1 + (-6.65 - 6.65i)T + 43iT^{2} \)
47 \( 1 + (2.15 - 1.09i)T + (27.6 - 38.0i)T^{2} \)
53 \( 1 + (0.199 + 0.391i)T + (-31.1 + 42.8i)T^{2} \)
59 \( 1 + (5.86 + 4.26i)T + (18.2 + 56.1i)T^{2} \)
61 \( 1 + (8.14 - 5.91i)T + (18.8 - 58.0i)T^{2} \)
67 \( 1 + (-5.28 - 2.69i)T + (39.3 + 54.2i)T^{2} \)
71 \( 1 + (-5.89 - 1.91i)T + (57.4 + 41.7i)T^{2} \)
73 \( 1 + (-10.2 - 1.62i)T + (69.4 + 22.5i)T^{2} \)
79 \( 1 + (-6.06 - 1.97i)T + (63.9 + 46.4i)T^{2} \)
83 \( 1 + (-6.92 - 3.52i)T + (48.7 + 67.1i)T^{2} \)
89 \( 1 + (-8.12 + 5.90i)T + (27.5 - 84.6i)T^{2} \)
97 \( 1 + (-5.51 - 10.8i)T + (-57.0 + 78.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71763541669145016721005378025, −12.29197394666675365078513898428, −11.05318857914161001041506764511, −10.61262563568872140459570978045, −9.134546188827949681951519043822, −7.943614028370373115443613078336, −6.81650019101581716833199436092, −6.21521594154342623230882625796, −4.16345342651908062055323637181, −2.12991623717074618903063094974, 0.51502484956680451990460462532, 3.63633197346087888200747905167, 4.99776534474108153405960869742, 6.30497862824900151202547495454, 7.50546290238613027769154099985, 8.859628461155013172145527093196, 9.568605257251211845589628929837, 10.84775456409705574807027272131, 11.47319329175925525507138429308, 12.47738419692781084486705490102

Graph of the $Z$-function along the critical line