Properties

Label 2-150-25.17-c2-0-3
Degree $2$
Conductor $150$
Sign $-0.229 - 0.973i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.642 + 1.26i)2-s + (−0.270 + 1.71i)3-s + (−1.17 − 1.61i)4-s + (4.98 + 0.362i)5-s + (−1.98 − 1.43i)6-s + (4.91 + 4.91i)7-s + (2.79 − 0.442i)8-s + (−2.85 − 0.927i)9-s + (−3.65 + 6.05i)10-s + (−0.450 − 1.38i)11-s + (3.08 − 1.57i)12-s + (4.46 + 8.77i)13-s + (−9.35 + 3.04i)14-s + (−1.97 + 8.43i)15-s + (−1.23 + 3.80i)16-s + (0.887 + 5.60i)17-s + ⋯
L(s)  = 1  + (−0.321 + 0.630i)2-s + (−0.0903 + 0.570i)3-s + (−0.293 − 0.404i)4-s + (0.997 + 0.0724i)5-s + (−0.330 − 0.239i)6-s + (0.702 + 0.702i)7-s + (0.349 − 0.0553i)8-s + (−0.317 − 0.103i)9-s + (−0.365 + 0.605i)10-s + (−0.0409 − 0.125i)11-s + (0.257 − 0.131i)12-s + (0.343 + 0.674i)13-s + (−0.668 + 0.217i)14-s + (−0.131 + 0.562i)15-s + (−0.0772 + 0.237i)16-s + (0.0521 + 0.329i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.229 - 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $-0.229 - 0.973i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ -0.229 - 0.973i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.859699 + 1.08643i\)
\(L(\frac12)\) \(\approx\) \(0.859699 + 1.08643i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.642 - 1.26i)T \)
3 \( 1 + (0.270 - 1.71i)T \)
5 \( 1 + (-4.98 - 0.362i)T \)
good7 \( 1 + (-4.91 - 4.91i)T + 49iT^{2} \)
11 \( 1 + (0.450 + 1.38i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-4.46 - 8.77i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (-0.887 - 5.60i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (15.9 - 21.9i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (20.8 + 10.6i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (16.3 + 22.5i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (-24.0 - 17.4i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-64.2 + 32.7i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (-1.47 + 4.52i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (4.91 - 4.91i)T - 1.84e3iT^{2} \)
47 \( 1 + (-49.7 - 7.88i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-15.2 + 96.2i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (53.3 + 17.3i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-7.49 - 23.0i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (-7.62 - 48.1i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (-45.6 + 33.1i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (108. + 55.5i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (69.8 + 96.1i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-79.7 + 12.6i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (17.8 - 5.79i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-1.77 - 0.281i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.29264254130229770720058646051, −11.98058383952061453095200771346, −10.78157585453166454677461762136, −9.893326753771666587889967776963, −8.919836672357954370056445066710, −8.064235599048928881561808587472, −6.31601617368280862636541964399, −5.65544154461910043716317221441, −4.30105143833871986513710259219, −2.02554900978655228637992551731, 1.13050666872105729572226749943, 2.57325051733855327951037612489, 4.53242987612279628693441849893, 5.94828520786071762821367147176, 7.31265884293056218476620020775, 8.375795614552310294500146298180, 9.529153102035011140426488117148, 10.58606007697194483309845773202, 11.31734587917027655038807017689, 12.57749345320915644606684525613

Graph of the $Z$-function along the critical line