Properties

Label 2-150-25.17-c2-0-2
Degree $2$
Conductor $150$
Sign $0.599 - 0.800i$
Analytic cond. $4.08720$
Root an. cond. $2.02168$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.642 − 1.26i)2-s + (−0.270 + 1.71i)3-s + (−1.17 − 1.61i)4-s + (−2.43 + 4.36i)5-s + (1.98 + 1.43i)6-s + (4.46 + 4.46i)7-s + (−2.79 + 0.442i)8-s + (−2.85 − 0.927i)9-s + (3.93 + 5.87i)10-s + (4.11 + 12.6i)11-s + (3.08 − 1.57i)12-s + (3.12 + 6.13i)13-s + (8.50 − 2.76i)14-s + (−6.80 − 5.35i)15-s + (−1.23 + 3.80i)16-s + (1.26 + 7.98i)17-s + ⋯
L(s)  = 1  + (0.321 − 0.630i)2-s + (−0.0903 + 0.570i)3-s + (−0.293 − 0.404i)4-s + (−0.487 + 0.872i)5-s + (0.330 + 0.239i)6-s + (0.638 + 0.638i)7-s + (−0.349 + 0.0553i)8-s + (−0.317 − 0.103i)9-s + (0.393 + 0.587i)10-s + (0.374 + 1.15i)11-s + (0.257 − 0.131i)12-s + (0.240 + 0.472i)13-s + (0.607 − 0.197i)14-s + (−0.453 − 0.357i)15-s + (−0.0772 + 0.237i)16-s + (0.0743 + 0.469i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.599 - 0.800i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.599 - 0.800i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(150\)    =    \(2 \cdot 3 \cdot 5^{2}\)
Sign: $0.599 - 0.800i$
Analytic conductor: \(4.08720\)
Root analytic conductor: \(2.02168\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{150} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 150,\ (\ :1),\ 0.599 - 0.800i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.30618 + 0.654047i\)
\(L(\frac12)\) \(\approx\) \(1.30618 + 0.654047i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.642 + 1.26i)T \)
3 \( 1 + (0.270 - 1.71i)T \)
5 \( 1 + (2.43 - 4.36i)T \)
good7 \( 1 + (-4.46 - 4.46i)T + 49iT^{2} \)
11 \( 1 + (-4.11 - 12.6i)T + (-97.8 + 71.1i)T^{2} \)
13 \( 1 + (-3.12 - 6.13i)T + (-99.3 + 136. i)T^{2} \)
17 \( 1 + (-1.26 - 7.98i)T + (-274. + 89.3i)T^{2} \)
19 \( 1 + (-6.62 + 9.11i)T + (-111. - 343. i)T^{2} \)
23 \( 1 + (-0.409 - 0.208i)T + (310. + 427. i)T^{2} \)
29 \( 1 + (2.55 + 3.51i)T + (-259. + 799. i)T^{2} \)
31 \( 1 + (22.7 + 16.5i)T + (296. + 913. i)T^{2} \)
37 \( 1 + (-54.4 + 27.7i)T + (804. - 1.10e3i)T^{2} \)
41 \( 1 + (19.2 - 59.3i)T + (-1.35e3 - 988. i)T^{2} \)
43 \( 1 + (-23.6 + 23.6i)T - 1.84e3iT^{2} \)
47 \( 1 + (9.41 + 1.49i)T + (2.10e3 + 682. i)T^{2} \)
53 \( 1 + (-6.51 + 41.1i)T + (-2.67e3 - 868. i)T^{2} \)
59 \( 1 + (76.9 + 25.0i)T + (2.81e3 + 2.04e3i)T^{2} \)
61 \( 1 + (-29.1 - 89.7i)T + (-3.01e3 + 2.18e3i)T^{2} \)
67 \( 1 + (13.6 + 86.2i)T + (-4.26e3 + 1.38e3i)T^{2} \)
71 \( 1 + (-26.9 + 19.5i)T + (1.55e3 - 4.79e3i)T^{2} \)
73 \( 1 + (-104. - 53.1i)T + (3.13e3 + 4.31e3i)T^{2} \)
79 \( 1 + (-15.5 - 21.3i)T + (-1.92e3 + 5.93e3i)T^{2} \)
83 \( 1 + (-152. + 24.2i)T + (6.55e3 - 2.12e3i)T^{2} \)
89 \( 1 + (52.8 - 17.1i)T + (6.40e3 - 4.65e3i)T^{2} \)
97 \( 1 + (-72.4 - 11.4i)T + (8.94e3 + 2.90e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69745074813416013931470009393, −11.64508926368532086590869439011, −11.17038950905229949709191031071, −10.03248916494672127528403732795, −9.094768675547607678234739026598, −7.69554082419793648276469006016, −6.29410802413649926724612655505, −4.84568194544104411864678766463, −3.77726638102038657161021648595, −2.22437504678530298660972131754, 0.937914691446297528924428474831, 3.59510999170654880028597000806, 4.95187856364735672948087056953, 6.04975854127109337215838202758, 7.48399584374519547337453320062, 8.153620078133654552494090452386, 9.145722520712380798768991392349, 10.90688399686358617132521813713, 11.80530862183759277134382712993, 12.77449024500253193204701947834

Graph of the $Z$-function along the critical line