Properties

Label 2-15-1.1-c1-0-0
Degree $2$
Conductor $15$
Sign $1$
Analytic cond. $0.119775$
Root an. cond. $0.346086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s − 4-s + 5-s + 6-s + 3·8-s + 9-s − 10-s − 4·11-s + 12-s − 2·13-s − 15-s − 16-s + 2·17-s − 18-s + 4·19-s − 20-s + 4·22-s − 3·24-s + 25-s + 2·26-s − 27-s − 2·29-s + 30-s − 5·32-s + 4·33-s − 2·34-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s − 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.06·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.258·15-s − 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.852·22-s − 0.612·24-s + 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.371·29-s + 0.182·30-s − 0.883·32-s + 0.696·33-s − 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(15\)    =    \(3 \cdot 5\)
Sign: $1$
Analytic conductor: \(0.119775\)
Root analytic conductor: \(0.346086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: $\chi_{15} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 15,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3501507605\)
\(L(\frac12)\) \(\approx\) \(0.3501507605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 - T \)
good2 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.11046245900217536106846201128, −18.10585375705648027116926624524, −17.23595347746433122931066197428, −15.95902603015140726835865441199, −14.00692585049802430183598730465, −12.64617876135106218873747419153, −10.67892245123374144028858824682, −9.523451675812284265792380668213, −7.66488013441745380243230842523, −5.23920392624592057055772361749, 5.23920392624592057055772361749, 7.66488013441745380243230842523, 9.523451675812284265792380668213, 10.67892245123374144028858824682, 12.64617876135106218873747419153, 14.00692585049802430183598730465, 15.95902603015140726835865441199, 17.23595347746433122931066197428, 18.10585375705648027116926624524, 19.11046245900217536106846201128

Graph of the $Z$-function along the critical line