L(s) = 1 | + (8 + 13.8i)3-s + (−8 + 13.8i)5-s + (−6.49 + 11.2i)9-s + (38 + 65.8i)11-s + 880·13-s − 255.·15-s + (528 + 914. i)17-s + (−968 + 1.67e3i)19-s + (−468 + 810. i)23-s + (1.43e3 + 2.48e3i)25-s + 3.68e3·27-s − 3.98e3·29-s + (−784 − 1.35e3i)31-s + (−607. + 1.05e3i)33-s + (−2.46e3 + 4.27e3i)37-s + ⋯ |
L(s) = 1 | + (0.513 + 0.888i)3-s + (−0.143 + 0.247i)5-s + (−0.0267 + 0.0463i)9-s + (0.0946 + 0.164i)11-s + 1.44·13-s − 0.293·15-s + (0.443 + 0.767i)17-s + (−0.615 + 1.06i)19-s + (−0.184 + 0.319i)23-s + (0.459 + 0.795i)25-s + 0.971·27-s − 0.879·29-s + (−0.146 − 0.253i)31-s + (−0.0971 + 0.168i)33-s + (−0.296 + 0.513i)37-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)(−0.386−0.922i)Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)(−0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
196
= 22⋅72
|
Sign: |
−0.386−0.922i
|
Analytic conductor: |
31.4352 |
Root analytic conductor: |
5.60671 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ196(177,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 196, ( :5/2), −0.386−0.922i)
|
Particular Values
L(3) |
≈ |
2.223325416 |
L(21) |
≈ |
2.223325416 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+(−8−13.8i)T+(−121.5+210.i)T2 |
| 5 | 1+(8−13.8i)T+(−1.56e3−2.70e3i)T2 |
| 11 | 1+(−38−65.8i)T+(−8.05e4+1.39e5i)T2 |
| 13 | 1−880T+3.71e5T2 |
| 17 | 1+(−528−914.i)T+(−7.09e5+1.22e6i)T2 |
| 19 | 1+(968−1.67e3i)T+(−1.23e6−2.14e6i)T2 |
| 23 | 1+(468−810.i)T+(−3.21e6−5.57e6i)T2 |
| 29 | 1+3.98e3T+2.05e7T2 |
| 31 | 1+(784+1.35e3i)T+(−1.43e7+2.47e7i)T2 |
| 37 | 1+(2.46e3−4.27e3i)T+(−3.46e7−6.00e7i)T2 |
| 41 | 1+1.58e4T+1.15e8T2 |
| 43 | 1+1.64e4T+1.47e8T2 |
| 47 | 1+(−1.03e4+1.79e4i)T+(−1.14e8−1.98e8i)T2 |
| 53 | 1+(−1.87e4−3.23e4i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(1.05e4+1.83e4i)T+(−3.57e8+6.19e8i)T2 |
| 61 | 1+(−1.49e3+2.59e3i)T+(−4.22e8−7.31e8i)T2 |
| 67 | 1+(−2.29e4−3.96e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+4.98e4T+1.80e9T2 |
| 73 | 1+(−2.81e4−4.87e4i)T+(−1.03e9+1.79e9i)T2 |
| 79 | 1+(2.03e4−3.52e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−1.12e5T+3.93e9T2 |
| 89 | 1+(3.21e4−5.56e4i)T+(−2.79e9−4.83e9i)T2 |
| 97 | 1+2.27e3T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.81561721452964933516469377766, −10.69561159184162142957522118339, −10.03886602568073940224929296641, −8.913900183961893331339833135641, −8.169400650125239181379762570001, −6.73325904190581035123164386360, −5.55214891417132274776228048930, −3.97068208298486547358754977853, −3.43351682167006167427289163902, −1.53492376867214420360106214468,
0.66966273850264665563748043896, 1.95317081922379601423345697329, 3.34176579791895165297360408445, 4.83078896996562077526495690341, 6.30201142062489954899870952425, 7.23631401458945937679305316037, 8.337777881192578572905154500694, 8.942898202073100229609197807777, 10.41391690129658148311588028599, 11.40397241812851182311984451600