L(s) = 1 | + (1 + 1.73i)3-s + (48 − 83.1i)5-s + (119.5 − 206. i)9-s + (360 + 623. i)11-s + 572·13-s + 192·15-s + (−627 − 1.08e3i)17-s + (47 − 81.4i)19-s + (−48 + 83.1i)23-s + (−3.04e3 − 5.27e3i)25-s + 964·27-s − 4.37e3·29-s + (3.12e3 + 5.40e3i)31-s + (−720 + 1.24e3i)33-s + (5.39e3 − 9.35e3i)37-s + ⋯ |
L(s) = 1 | + (0.0641 + 0.111i)3-s + (0.858 − 1.48i)5-s + (0.491 − 0.851i)9-s + (0.897 + 1.55i)11-s + 0.938·13-s + 0.220·15-s + (−0.526 − 0.911i)17-s + (0.0298 − 0.0517i)19-s + (−0.0189 + 0.0327i)23-s + (−0.974 − 1.68i)25-s + 0.254·27-s − 0.965·29-s + (0.583 + 1.01i)31-s + (−0.115 + 0.199i)33-s + (0.648 − 1.12i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(2.642198392\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.642198392\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-121.5 + 210. i)T^{2} \) |
| 5 | \( 1 + (-48 + 83.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-360 - 623. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 572T + 3.71e5T^{2} \) |
| 17 | \( 1 + (627 + 1.08e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-47 + 81.4i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (48 - 83.1i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 4.37e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.12e3 - 5.40e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-5.39e3 + 9.35e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 - 1.20e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 9.16e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.29e4 + 2.23e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (507 + 878. i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (621 + 1.07e3i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (3.79e3 - 6.57e3i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.05e4 + 3.56e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.76e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-6.71e3 - 1.16e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (3.12e3 - 5.41e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 2.52e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-2.25e4 + 3.90e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 1.07e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69892028731118300029891720455, −10.11822321942125499940221524956, −9.246517589269486315574353788281, −8.903823049369117879779130538055, −7.23787286664908900574329845401, −6.14327969513421458966312187946, −4.88413329179933057710171367319, −4.00948766188503505360097222881, −1.89389763388040805378306134700, −0.895393808723037845062778731143,
1.45585746379722354554727224778, 2.76775958912000936925935696216, 3.96232046359291411778283530961, 5.96517132056709824531322519630, 6.34816407409272334377585672761, 7.66335222581771956890716831223, 8.816814517174552640553453559451, 10.00834919721597987986457834928, 10.94867083935413610935020352043, 11.32464509502692729273788668847