L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.5 + 0.866i)16-s + (0.499 + 0.866i)18-s + (0.5 + 0.866i)25-s − 2·29-s + (0.499 + 0.866i)32-s + 0.999·36-s + (1 − 1.73i)37-s + 0.999·50-s + (−1 − 1.73i)53-s + (−1 + 1.73i)58-s + 0.999·64-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.999·8-s + (−0.5 + 0.866i)9-s + (−0.5 + 0.866i)16-s + (0.499 + 0.866i)18-s + (0.5 + 0.866i)25-s − 2·29-s + (0.499 + 0.866i)32-s + 0.999·36-s + (1 − 1.73i)37-s + 0.999·50-s + (−1 − 1.73i)53-s + (−1 + 1.73i)58-s + 0.999·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7969303608\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7969303608\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + 2T + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.69141897461786698404848434635, −11.35294802171642945672225285257, −10.97138784553999417208556347366, −9.756373681544834803200131627476, −8.820670258734472405030051147178, −7.49701636140976844582415404029, −5.89992524169561971065949613182, −4.97528652268026370505559725304, −3.58162411329461393066864114016, −2.12569062224151564491364255442,
3.09336987652443877185837786336, 4.38000068575935630123086381756, 5.72155615144303813595824092520, 6.58732678641571362341105103184, 7.74801773578209418145434274888, 8.782608087660897668507769907627, 9.670190919253859328223890927600, 11.23302451880094472070769875365, 12.16419199014233014976224479993, 13.00780039069378470022071841936