Properties

Label 2-14e2-196.103-c1-0-20
Degree $2$
Conductor $196$
Sign $0.996 + 0.0783i$
Analytic cond. $1.56506$
Root an. cond. $1.25102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.35 − 0.403i)2-s + (1.25 + 0.857i)3-s + (1.67 − 1.09i)4-s + (−0.263 − 0.0197i)5-s + (2.05 + 0.654i)6-s + (−2.03 + 1.68i)7-s + (1.82 − 2.15i)8-s + (−0.248 − 0.633i)9-s + (−0.365 + 0.0796i)10-s + (−1.57 − 0.619i)11-s + (3.04 + 0.0592i)12-s + (−2.83 + 2.26i)13-s + (−2.08 + 3.11i)14-s + (−0.314 − 0.250i)15-s + (1.60 − 3.66i)16-s + (0.766 + 0.826i)17-s + ⋯
L(s)  = 1  + (0.958 − 0.285i)2-s + (0.726 + 0.495i)3-s + (0.837 − 0.547i)4-s + (−0.117 − 0.00883i)5-s + (0.837 + 0.267i)6-s + (−0.770 + 0.637i)7-s + (0.646 − 0.763i)8-s + (−0.0828 − 0.211i)9-s + (−0.115 + 0.0251i)10-s + (−0.475 − 0.186i)11-s + (0.879 + 0.0171i)12-s + (−0.787 + 0.628i)13-s + (−0.555 + 0.831i)14-s + (−0.0812 − 0.0647i)15-s + (0.401 − 0.915i)16-s + (0.186 + 0.200i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0783i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 + 0.0783i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $0.996 + 0.0783i$
Analytic conductor: \(1.56506\)
Root analytic conductor: \(1.25102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{196} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :1/2),\ 0.996 + 0.0783i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.20582 - 0.0865345i\)
\(L(\frac12)\) \(\approx\) \(2.20582 - 0.0865345i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.35 + 0.403i)T \)
7 \( 1 + (2.03 - 1.68i)T \)
good3 \( 1 + (-1.25 - 0.857i)T + (1.09 + 2.79i)T^{2} \)
5 \( 1 + (0.263 + 0.0197i)T + (4.94 + 0.745i)T^{2} \)
11 \( 1 + (1.57 + 0.619i)T + (8.06 + 7.48i)T^{2} \)
13 \( 1 + (2.83 - 2.26i)T + (2.89 - 12.6i)T^{2} \)
17 \( 1 + (-0.766 - 0.826i)T + (-1.27 + 16.9i)T^{2} \)
19 \( 1 + (-0.734 + 1.27i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.16 + 2.33i)T + (-1.71 - 22.9i)T^{2} \)
29 \( 1 + (-1.25 - 5.50i)T + (-26.1 + 12.5i)T^{2} \)
31 \( 1 + (-2.89 - 5.01i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (2.55 + 0.788i)T + (30.5 + 20.8i)T^{2} \)
41 \( 1 + (-2.59 - 5.39i)T + (-25.5 + 32.0i)T^{2} \)
43 \( 1 + (-4.36 + 9.06i)T + (-26.8 - 33.6i)T^{2} \)
47 \( 1 + (5.64 - 0.851i)T + (44.9 - 13.8i)T^{2} \)
53 \( 1 + (0.0663 - 0.0204i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (-0.838 - 11.1i)T + (-58.3 + 8.79i)T^{2} \)
61 \( 1 + (-0.0587 + 0.190i)T + (-50.4 - 34.3i)T^{2} \)
67 \( 1 + (12.8 - 7.43i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-3.45 - 0.788i)T + (63.9 + 30.8i)T^{2} \)
73 \( 1 + (-0.419 + 2.78i)T + (-69.7 - 21.5i)T^{2} \)
79 \( 1 + (-13.0 - 7.52i)T + (39.5 + 68.4i)T^{2} \)
83 \( 1 + (-3.20 + 4.01i)T + (-18.4 - 80.9i)T^{2} \)
89 \( 1 + (-16.7 + 6.56i)T + (65.2 - 60.5i)T^{2} \)
97 \( 1 + 7.85iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44099446262554630126425127532, −11.85099571598472841018628221679, −10.50154675760623991073548852579, −9.634964756716799669623887238506, −8.686503280709991616814536430390, −7.15272262454856046664777482421, −6.03312435458143452602974934261, −4.77222104611312650338187215344, −3.47215778009560177206858952066, −2.54556635541983140544861144260, 2.43631675045396150247809288484, 3.53016559047383233159987784731, 4.98552219799263926776355298090, 6.27781017619137632199314838420, 7.63336062646691950924405258980, 7.80207197757382840086971476626, 9.580057865297333426558080668902, 10.66809281546744193528912280947, 11.87878660792700989403179406672, 12.89547044403832068567333334591

Graph of the $Z$-function along the critical line