L(s) = 1 | + (−1.02 − 0.979i)2-s + (−1.63 − 1.11i)3-s + (0.0826 + 1.99i)4-s + (2.43 + 0.182i)5-s + (0.577 + 2.74i)6-s + (1.91 − 1.82i)7-s + (1.87 − 2.12i)8-s + (0.337 + 0.859i)9-s + (−2.30 − 2.57i)10-s + (−2.09 − 0.823i)11-s + (2.09 − 3.36i)12-s + (0.425 − 0.339i)13-s + (−3.74 − 0.00463i)14-s + (−3.78 − 3.01i)15-s + (−3.98 + 0.330i)16-s + (−2.31 − 2.49i)17-s + ⋯ |
L(s) = 1 | + (−0.721 − 0.692i)2-s + (−0.944 − 0.644i)3-s + (0.0413 + 0.999i)4-s + (1.08 + 0.0816i)5-s + (0.235 + 1.11i)6-s + (0.722 − 0.691i)7-s + (0.661 − 0.749i)8-s + (0.112 + 0.286i)9-s + (−0.729 − 0.813i)10-s + (−0.632 − 0.248i)11-s + (0.604 − 0.970i)12-s + (0.117 − 0.0940i)13-s + (−0.999 − 0.00123i)14-s + (−0.976 − 0.779i)15-s + (−0.996 + 0.0825i)16-s + (−0.562 − 0.606i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.455 + 0.890i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.377315 - 0.616698i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.377315 - 0.616698i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.02 + 0.979i)T \) |
| 7 | \( 1 + (-1.91 + 1.82i)T \) |
good | 3 | \( 1 + (1.63 + 1.11i)T + (1.09 + 2.79i)T^{2} \) |
| 5 | \( 1 + (-2.43 - 0.182i)T + (4.94 + 0.745i)T^{2} \) |
| 11 | \( 1 + (2.09 + 0.823i)T + (8.06 + 7.48i)T^{2} \) |
| 13 | \( 1 + (-0.425 + 0.339i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (2.31 + 2.49i)T + (-1.27 + 16.9i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.535i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.40 + 5.82i)T + (-1.71 - 22.9i)T^{2} \) |
| 29 | \( 1 + (1.87 + 8.19i)T + (-26.1 + 12.5i)T^{2} \) |
| 31 | \( 1 + (-0.779 - 1.35i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-11.4 - 3.53i)T + (30.5 + 20.8i)T^{2} \) |
| 41 | \( 1 + (0.189 + 0.393i)T + (-25.5 + 32.0i)T^{2} \) |
| 43 | \( 1 + (2.48 - 5.15i)T + (-26.8 - 33.6i)T^{2} \) |
| 47 | \( 1 + (2.28 - 0.344i)T + (44.9 - 13.8i)T^{2} \) |
| 53 | \( 1 + (-1.32 + 0.407i)T + (43.7 - 29.8i)T^{2} \) |
| 59 | \( 1 + (-0.851 - 11.3i)T + (-58.3 + 8.79i)T^{2} \) |
| 61 | \( 1 + (4.06 - 13.1i)T + (-50.4 - 34.3i)T^{2} \) |
| 67 | \( 1 + (5.00 - 2.89i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-9.15 - 2.08i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (-0.0617 + 0.409i)T + (-69.7 - 21.5i)T^{2} \) |
| 79 | \( 1 + (-5.72 - 3.30i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.68 + 7.12i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (-2.24 + 0.879i)T + (65.2 - 60.5i)T^{2} \) |
| 97 | \( 1 - 16.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91035175257004534180725405793, −11.13257333211896226609910654397, −10.44504713951519309750733650479, −9.418188098331164778265459921714, −8.162180771656028572976941793899, −7.07404727994871619491724739312, −6.04477210281411513909401175764, −4.62331023946777626850552918624, −2.50963899366327486340994039708, −0.955856899306573965428602064407,
1.94539781430128658757605064105, 4.92097194907541784584189748568, 5.45284799855962929190333534901, 6.37110850401857206187662674471, 7.81681829774802727799471950698, 9.023257226873562151266832124272, 9.764013910537154760720441441503, 10.84151785131566691279195658692, 11.27853298618573098736480139493, 12.87349876005850017503366856722