Properties

Label 2-14e2-1.1-c5-0-2
Degree $2$
Conductor $196$
Sign $1$
Analytic cond. $31.4352$
Root an. cond. $5.60671$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19·3-s + 19·5-s + 118·9-s − 559·11-s + 282·13-s − 361·15-s + 1.25e3·17-s − 1.95e3·19-s − 2.97e3·23-s − 2.76e3·25-s + 2.37e3·27-s − 62·29-s + 2.03e3·31-s + 1.06e4·33-s + 6.02e3·37-s − 5.35e3·39-s − 2.17e3·41-s + 2.31e4·43-s + 2.24e3·45-s + 2.62e4·47-s − 2.39e4·51-s + 3.02e4·53-s − 1.06e4·55-s + 3.71e4·57-s + 4.49e4·59-s + 2.76e4·61-s + 5.35e3·65-s + ⋯
L(s)  = 1  − 1.21·3-s + 0.339·5-s + 0.485·9-s − 1.39·11-s + 0.462·13-s − 0.414·15-s + 1.05·17-s − 1.24·19-s − 1.17·23-s − 0.884·25-s + 0.626·27-s − 0.0136·29-s + 0.380·31-s + 1.69·33-s + 0.723·37-s − 0.564·39-s − 0.202·41-s + 1.91·43-s + 0.165·45-s + 1.73·47-s − 1.28·51-s + 1.48·53-s − 0.473·55-s + 1.51·57-s + 1.68·59-s + 0.951·61-s + 0.157·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(31.4352\)
Root analytic conductor: \(5.60671\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 196,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.9521502316\)
\(L(\frac12)\) \(\approx\) \(0.9521502316\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 19 T + p^{5} T^{2} \)
5 \( 1 - 19 T + p^{5} T^{2} \)
11 \( 1 + 559 T + p^{5} T^{2} \)
13 \( 1 - 282 T + p^{5} T^{2} \)
17 \( 1 - 1259 T + p^{5} T^{2} \)
19 \( 1 + 103 p T + p^{5} T^{2} \)
23 \( 1 + 2977 T + p^{5} T^{2} \)
29 \( 1 + 62 T + p^{5} T^{2} \)
31 \( 1 - 2037 T + p^{5} T^{2} \)
37 \( 1 - 6023 T + p^{5} T^{2} \)
41 \( 1 + 2178 T + p^{5} T^{2} \)
43 \( 1 - 23180 T + p^{5} T^{2} \)
47 \( 1 - 26235 T + p^{5} T^{2} \)
53 \( 1 - 30267 T + p^{5} T^{2} \)
59 \( 1 - 44965 T + p^{5} T^{2} \)
61 \( 1 - 27639 T + p^{5} T^{2} \)
67 \( 1 + 58667 T + p^{5} T^{2} \)
71 \( 1 + 9520 T + p^{5} T^{2} \)
73 \( 1 + 6785 T + p^{5} T^{2} \)
79 \( 1 + 16929 T + p^{5} T^{2} \)
83 \( 1 + 59572 T + p^{5} T^{2} \)
89 \( 1 + 51873 T + p^{5} T^{2} \)
97 \( 1 - 134110 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.60252128695498507450502646560, −10.56582925062182337027730802639, −10.08557000420794259723917562975, −8.523667374787308610005360709672, −7.44878144686599984055135046464, −5.97295929337285773196412102415, −5.61217192231749568571645471821, −4.20896644872424063118761118579, −2.38723346524916100694891281294, −0.62429274721294688666479253196, 0.62429274721294688666479253196, 2.38723346524916100694891281294, 4.20896644872424063118761118579, 5.61217192231749568571645471821, 5.97295929337285773196412102415, 7.44878144686599984055135046464, 8.523667374787308610005360709672, 10.08557000420794259723917562975, 10.56582925062182337027730802639, 11.60252128695498507450502646560

Graph of the $Z$-function along the critical line