L(s) = 1 | − 19·3-s + 19·5-s + 118·9-s − 559·11-s + 282·13-s − 361·15-s + 1.25e3·17-s − 1.95e3·19-s − 2.97e3·23-s − 2.76e3·25-s + 2.37e3·27-s − 62·29-s + 2.03e3·31-s + 1.06e4·33-s + 6.02e3·37-s − 5.35e3·39-s − 2.17e3·41-s + 2.31e4·43-s + 2.24e3·45-s + 2.62e4·47-s − 2.39e4·51-s + 3.02e4·53-s − 1.06e4·55-s + 3.71e4·57-s + 4.49e4·59-s + 2.76e4·61-s + 5.35e3·65-s + ⋯ |
L(s) = 1 | − 1.21·3-s + 0.339·5-s + 0.485·9-s − 1.39·11-s + 0.462·13-s − 0.414·15-s + 1.05·17-s − 1.24·19-s − 1.17·23-s − 0.884·25-s + 0.626·27-s − 0.0136·29-s + 0.380·31-s + 1.69·33-s + 0.723·37-s − 0.564·39-s − 0.202·41-s + 1.91·43-s + 0.165·45-s + 1.73·47-s − 1.28·51-s + 1.48·53-s − 0.473·55-s + 1.51·57-s + 1.68·59-s + 0.951·61-s + 0.157·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.9521502316\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9521502316\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 19 T + p^{5} T^{2} \) |
| 5 | \( 1 - 19 T + p^{5} T^{2} \) |
| 11 | \( 1 + 559 T + p^{5} T^{2} \) |
| 13 | \( 1 - 282 T + p^{5} T^{2} \) |
| 17 | \( 1 - 1259 T + p^{5} T^{2} \) |
| 19 | \( 1 + 103 p T + p^{5} T^{2} \) |
| 23 | \( 1 + 2977 T + p^{5} T^{2} \) |
| 29 | \( 1 + 62 T + p^{5} T^{2} \) |
| 31 | \( 1 - 2037 T + p^{5} T^{2} \) |
| 37 | \( 1 - 6023 T + p^{5} T^{2} \) |
| 41 | \( 1 + 2178 T + p^{5} T^{2} \) |
| 43 | \( 1 - 23180 T + p^{5} T^{2} \) |
| 47 | \( 1 - 26235 T + p^{5} T^{2} \) |
| 53 | \( 1 - 30267 T + p^{5} T^{2} \) |
| 59 | \( 1 - 44965 T + p^{5} T^{2} \) |
| 61 | \( 1 - 27639 T + p^{5} T^{2} \) |
| 67 | \( 1 + 58667 T + p^{5} T^{2} \) |
| 71 | \( 1 + 9520 T + p^{5} T^{2} \) |
| 73 | \( 1 + 6785 T + p^{5} T^{2} \) |
| 79 | \( 1 + 16929 T + p^{5} T^{2} \) |
| 83 | \( 1 + 59572 T + p^{5} T^{2} \) |
| 89 | \( 1 + 51873 T + p^{5} T^{2} \) |
| 97 | \( 1 - 134110 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60252128695498507450502646560, −10.56582925062182337027730802639, −10.08557000420794259723917562975, −8.523667374787308610005360709672, −7.44878144686599984055135046464, −5.97295929337285773196412102415, −5.61217192231749568571645471821, −4.20896644872424063118761118579, −2.38723346524916100694891281294, −0.62429274721294688666479253196,
0.62429274721294688666479253196, 2.38723346524916100694891281294, 4.20896644872424063118761118579, 5.61217192231749568571645471821, 5.97295929337285773196412102415, 7.44878144686599984055135046464, 8.523667374787308610005360709672, 10.08557000420794259723917562975, 10.56582925062182337027730802639, 11.60252128695498507450502646560