Properties

Label 2-14e2-1.1-c5-0-16
Degree $2$
Conductor $196$
Sign $-1$
Analytic cond. $31.4352$
Root an. cond. $5.60671$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 19·3-s − 19·5-s + 118·9-s − 559·11-s − 282·13-s − 361·15-s − 1.25e3·17-s + 1.95e3·19-s − 2.97e3·23-s − 2.76e3·25-s − 2.37e3·27-s − 62·29-s − 2.03e3·31-s − 1.06e4·33-s + 6.02e3·37-s − 5.35e3·39-s + 2.17e3·41-s + 2.31e4·43-s − 2.24e3·45-s − 2.62e4·47-s − 2.39e4·51-s + 3.02e4·53-s + 1.06e4·55-s + 3.71e4·57-s − 4.49e4·59-s − 2.76e4·61-s + 5.35e3·65-s + ⋯
L(s)  = 1  + 1.21·3-s − 0.339·5-s + 0.485·9-s − 1.39·11-s − 0.462·13-s − 0.414·15-s − 1.05·17-s + 1.24·19-s − 1.17·23-s − 0.884·25-s − 0.626·27-s − 0.0136·29-s − 0.380·31-s − 1.69·33-s + 0.723·37-s − 0.564·39-s + 0.202·41-s + 1.91·43-s − 0.165·45-s − 1.73·47-s − 1.28·51-s + 1.48·53-s + 0.473·55-s + 1.51·57-s − 1.68·59-s − 0.951·61-s + 0.157·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(31.4352\)
Root analytic conductor: \(5.60671\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 196,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 19 T + p^{5} T^{2} \)
5 \( 1 + 19 T + p^{5} T^{2} \)
11 \( 1 + 559 T + p^{5} T^{2} \)
13 \( 1 + 282 T + p^{5} T^{2} \)
17 \( 1 + 1259 T + p^{5} T^{2} \)
19 \( 1 - 103 p T + p^{5} T^{2} \)
23 \( 1 + 2977 T + p^{5} T^{2} \)
29 \( 1 + 62 T + p^{5} T^{2} \)
31 \( 1 + 2037 T + p^{5} T^{2} \)
37 \( 1 - 6023 T + p^{5} T^{2} \)
41 \( 1 - 2178 T + p^{5} T^{2} \)
43 \( 1 - 23180 T + p^{5} T^{2} \)
47 \( 1 + 26235 T + p^{5} T^{2} \)
53 \( 1 - 30267 T + p^{5} T^{2} \)
59 \( 1 + 44965 T + p^{5} T^{2} \)
61 \( 1 + 27639 T + p^{5} T^{2} \)
67 \( 1 + 58667 T + p^{5} T^{2} \)
71 \( 1 + 9520 T + p^{5} T^{2} \)
73 \( 1 - 6785 T + p^{5} T^{2} \)
79 \( 1 + 16929 T + p^{5} T^{2} \)
83 \( 1 - 59572 T + p^{5} T^{2} \)
89 \( 1 - 51873 T + p^{5} T^{2} \)
97 \( 1 + 134110 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.08533166101565359769298762595, −9.932616478515652755999930660611, −9.075429219367798480553713830677, −7.927393287052803720096766319638, −7.51643405196168242899055294119, −5.78027410751181599638270063862, −4.38636738318164764210876234945, −3.08876708899229142460158175460, −2.13451730939695001953089752105, 0, 2.13451730939695001953089752105, 3.08876708899229142460158175460, 4.38636738318164764210876234945, 5.78027410751181599638270063862, 7.51643405196168242899055294119, 7.927393287052803720096766319638, 9.075429219367798480553713830677, 9.932616478515652755999930660611, 11.08533166101565359769298762595

Graph of the $Z$-function along the critical line