Properties

Label 2-14e2-1.1-c5-0-14
Degree $2$
Conductor $196$
Sign $-1$
Analytic cond. $31.4352$
Root an. cond. $5.60671$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·3-s − 16·5-s + 13·9-s − 76·11-s − 880·13-s − 256·15-s + 1.05e3·17-s − 1.93e3·19-s + 936·23-s − 2.86e3·25-s − 3.68e3·27-s − 3.98e3·29-s − 1.56e3·31-s − 1.21e3·33-s + 4.93e3·37-s − 1.40e4·39-s + 1.58e4·41-s − 1.64e4·43-s − 208·45-s + 2.07e4·47-s + 1.68e4·51-s − 3.74e4·53-s + 1.21e3·55-s − 3.09e4·57-s − 2.11e4·59-s + 2.99e3·61-s + 1.40e4·65-s + ⋯
L(s)  = 1  + 1.02·3-s − 0.286·5-s + 0.0534·9-s − 0.189·11-s − 1.44·13-s − 0.293·15-s + 0.886·17-s − 1.23·19-s + 0.368·23-s − 0.918·25-s − 0.971·27-s − 0.879·29-s − 0.293·31-s − 0.194·33-s + 0.592·37-s − 1.48·39-s + 1.47·41-s − 1.35·43-s − 0.0153·45-s + 1.37·47-s + 0.909·51-s − 1.82·53-s + 0.0542·55-s − 1.26·57-s − 0.790·59-s + 0.102·61-s + 0.413·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 196 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(196\)    =    \(2^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(31.4352\)
Root analytic conductor: \(5.60671\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 196,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 16 T + p^{5} T^{2} \)
5 \( 1 + 16 T + p^{5} T^{2} \)
11 \( 1 + 76 T + p^{5} T^{2} \)
13 \( 1 + 880 T + p^{5} T^{2} \)
17 \( 1 - 1056 T + p^{5} T^{2} \)
19 \( 1 + 1936 T + p^{5} T^{2} \)
23 \( 1 - 936 T + p^{5} T^{2} \)
29 \( 1 + 3982 T + p^{5} T^{2} \)
31 \( 1 + 1568 T + p^{5} T^{2} \)
37 \( 1 - 4938 T + p^{5} T^{2} \)
41 \( 1 - 15840 T + p^{5} T^{2} \)
43 \( 1 + 16412 T + p^{5} T^{2} \)
47 \( 1 - 20768 T + p^{5} T^{2} \)
53 \( 1 + 37402 T + p^{5} T^{2} \)
59 \( 1 + 21136 T + p^{5} T^{2} \)
61 \( 1 - 2992 T + p^{5} T^{2} \)
67 \( 1 + 45836 T + p^{5} T^{2} \)
71 \( 1 + 49840 T + p^{5} T^{2} \)
73 \( 1 - 56320 T + p^{5} T^{2} \)
79 \( 1 - 40744 T + p^{5} T^{2} \)
83 \( 1 + 112464 T + p^{5} T^{2} \)
89 \( 1 + 64256 T + p^{5} T^{2} \)
97 \( 1 - 2272 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11934952930408683217974095153, −9.912097341833551231886626584146, −9.117057064351244167717841728309, −8.000401111161975491985811102779, −7.37794509514168199710632770980, −5.80510226883609311387981537021, −4.40643557330991043221122454290, −3.13817567987038009762163477490, −2.06078647409770693681637937373, 0, 2.06078647409770693681637937373, 3.13817567987038009762163477490, 4.40643557330991043221122454290, 5.80510226883609311387981537021, 7.37794509514168199710632770980, 8.000401111161975491985811102779, 9.117057064351244167717841728309, 9.912097341833551231886626584146, 11.11934952930408683217974095153

Graph of the $Z$-function along the critical line