L(s) = 1 | − 16·3-s + 16·5-s + 13·9-s − 76·11-s + 880·13-s − 256·15-s − 1.05e3·17-s + 1.93e3·19-s + 936·23-s − 2.86e3·25-s + 3.68e3·27-s − 3.98e3·29-s + 1.56e3·31-s + 1.21e3·33-s + 4.93e3·37-s − 1.40e4·39-s − 1.58e4·41-s − 1.64e4·43-s + 208·45-s − 2.07e4·47-s + 1.68e4·51-s − 3.74e4·53-s − 1.21e3·55-s − 3.09e4·57-s + 2.11e4·59-s − 2.99e3·61-s + 1.40e4·65-s + ⋯ |
L(s) = 1 | − 1.02·3-s + 0.286·5-s + 0.0534·9-s − 0.189·11-s + 1.44·13-s − 0.293·15-s − 0.886·17-s + 1.23·19-s + 0.368·23-s − 0.918·25-s + 0.971·27-s − 0.879·29-s + 0.293·31-s + 0.194·33-s + 0.592·37-s − 1.48·39-s − 1.47·41-s − 1.35·43-s + 0.0153·45-s − 1.37·47-s + 0.909·51-s − 1.82·53-s − 0.0542·55-s − 1.26·57-s + 0.790·59-s − 0.102·61-s + 0.413·65-s + ⋯ |
Λ(s)=(=(196s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(196s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
good | 3 | 1+16T+p5T2 |
| 5 | 1−16T+p5T2 |
| 11 | 1+76T+p5T2 |
| 13 | 1−880T+p5T2 |
| 17 | 1+1056T+p5T2 |
| 19 | 1−1936T+p5T2 |
| 23 | 1−936T+p5T2 |
| 29 | 1+3982T+p5T2 |
| 31 | 1−1568T+p5T2 |
| 37 | 1−4938T+p5T2 |
| 41 | 1+15840T+p5T2 |
| 43 | 1+16412T+p5T2 |
| 47 | 1+20768T+p5T2 |
| 53 | 1+37402T+p5T2 |
| 59 | 1−21136T+p5T2 |
| 61 | 1+2992T+p5T2 |
| 67 | 1+45836T+p5T2 |
| 71 | 1+49840T+p5T2 |
| 73 | 1+56320T+p5T2 |
| 79 | 1−40744T+p5T2 |
| 83 | 1−112464T+p5T2 |
| 89 | 1−64256T+p5T2 |
| 97 | 1+2272T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30993833705951049102484630701, −10.33827622522800303758518587013, −9.202464916592899095833117710846, −8.079338207150592065476131412267, −6.65820021598812265171019338656, −5.86798867726540691966244533113, −4.88215768015196385897094500276, −3.33606421234861251947254713755, −1.48732122041019195017557348087, 0,
1.48732122041019195017557348087, 3.33606421234861251947254713755, 4.88215768015196385897094500276, 5.86798867726540691966244533113, 6.65820021598812265171019338656, 8.079338207150592065476131412267, 9.202464916592899095833117710846, 10.33827622522800303758518587013, 11.30993833705951049102484630701