Properties

Label 2-1480-1.1-c1-0-24
Degree $2$
Conductor $1480$
Sign $-1$
Analytic cond. $11.8178$
Root an. cond. $3.43771$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 2·7-s + 9-s − 6·13-s − 2·15-s − 2·17-s + 6·19-s − 4·21-s − 4·23-s + 25-s + 4·27-s − 2·29-s − 6·31-s + 2·35-s + 37-s + 12·39-s − 6·41-s + 8·43-s + 45-s − 6·47-s − 3·49-s + 4·51-s − 10·53-s − 12·57-s + 14·59-s + 6·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 1.66·13-s − 0.516·15-s − 0.485·17-s + 1.37·19-s − 0.872·21-s − 0.834·23-s + 1/5·25-s + 0.769·27-s − 0.371·29-s − 1.07·31-s + 0.338·35-s + 0.164·37-s + 1.92·39-s − 0.937·41-s + 1.21·43-s + 0.149·45-s − 0.875·47-s − 3/7·49-s + 0.560·51-s − 1.37·53-s − 1.58·57-s + 1.82·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1480\)    =    \(2^{3} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(11.8178\)
Root analytic conductor: \(3.43771\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
37 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 14 T + p T^{2} \)
83 \( 1 - 2 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.347853271040922321452254411051, −8.178957074481073668057998940629, −7.35951337351047442755521078002, −6.62480561254250018150161345212, −5.47521400662582269779531059657, −5.24711603893625671187585278140, −4.27942991552327182059098455072, −2.76432837165668816106238211903, −1.59039661464182765903059953927, 0, 1.59039661464182765903059953927, 2.76432837165668816106238211903, 4.27942991552327182059098455072, 5.24711603893625671187585278140, 5.47521400662582269779531059657, 6.62480561254250018150161345212, 7.35951337351047442755521078002, 8.178957074481073668057998940629, 9.347853271040922321452254411051

Graph of the $Z$-function along the critical line