Properties

Label 2-1472-184.91-c1-0-3
Degree $2$
Conductor $1472$
Sign $-0.707 - 0.707i$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.639·5-s − 3·9-s − 5.62i·11-s + 6.89i·19-s + 4.79i·23-s − 4.59·25-s + 9.59i·31-s + 11.8·37-s − 9.59·41-s + 4.34i·43-s + 1.91·45-s + 2i·47-s − 7·49-s − 13.1·53-s + 3.59i·55-s + ⋯
L(s)  = 1  − 0.285·5-s − 9-s − 1.69i·11-s + 1.58i·19-s + 0.999i·23-s − 0.918·25-s + 1.72i·31-s + 1.95·37-s − 1.49·41-s + 0.662i·43-s + 0.285·45-s + 0.291i·47-s − 49-s − 1.80·53-s + 0.484i·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1472} (735, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4328718319\)
\(L(\frac12)\) \(\approx\) \(0.4328718319\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 4.79iT \)
good3 \( 1 + 3T^{2} \)
5 \( 1 + 0.639T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 5.62iT - 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 6.89iT - 19T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 - 9.59iT - 31T^{2} \)
37 \( 1 - 11.8T + 37T^{2} \)
41 \( 1 + 9.59T + 41T^{2} \)
43 \( 1 - 4.34iT - 43T^{2} \)
47 \( 1 - 2iT - 47T^{2} \)
53 \( 1 + 13.1T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 10.6T + 61T^{2} \)
67 \( 1 + 8.17iT - 67T^{2} \)
71 \( 1 - 10iT - 71T^{2} \)
73 \( 1 + 9.59T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 18.1iT - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.766294707960817376040551415133, −8.872629898412281838968013049272, −8.164048207564608910663309529693, −7.69275978182701986686660512677, −6.18859913998721704482359975221, −5.94180079143450307412385630991, −4.87983679306476682090419305836, −3.51543400009347514399929374051, −3.11386387690465826522731801250, −1.46408388628849698568588690651, 0.16841429039001183893974432430, 2.06025100583167401427033202001, 2.91559006285694047322890175204, 4.28012589844985206704149509601, 4.84091796337058703652172376491, 5.97705474554596588089219366629, 6.79944642611029779940907068705, 7.64356471446412348726757580211, 8.327569737620674336898214582151, 9.355351267694286874345858741517

Graph of the $Z$-function along the critical line