Properties

Label 2-1472-1.1-c3-0-97
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s + 20·5-s + 2·7-s + 54·9-s + 52·11-s − 43·13-s + 180·15-s − 50·17-s + 74·19-s + 18·21-s − 23·23-s + 275·25-s + 243·27-s + 7·29-s − 273·31-s + 468·33-s + 40·35-s + 4·37-s − 387·39-s + 123·41-s + 152·43-s + 1.08e3·45-s + 75·47-s − 339·49-s − 450·51-s − 86·53-s + 1.04e3·55-s + ⋯
L(s)  = 1  + 1.73·3-s + 1.78·5-s + 0.107·7-s + 2·9-s + 1.42·11-s − 0.917·13-s + 3.09·15-s − 0.713·17-s + 0.893·19-s + 0.187·21-s − 0.208·23-s + 11/5·25-s + 1.73·27-s + 0.0448·29-s − 1.58·31-s + 2.46·33-s + 0.193·35-s + 0.0177·37-s − 1.58·39-s + 0.468·41-s + 0.539·43-s + 3.57·45-s + 0.232·47-s − 0.988·49-s − 1.23·51-s − 0.222·53-s + 2.54·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.698837248\)
\(L(\frac12)\) \(\approx\) \(6.698837248\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + p T \)
good3 \( 1 - p^{2} T + p^{3} T^{2} \)
5 \( 1 - 4 p T + p^{3} T^{2} \)
7 \( 1 - 2 T + p^{3} T^{2} \)
11 \( 1 - 52 T + p^{3} T^{2} \)
13 \( 1 + 43 T + p^{3} T^{2} \)
17 \( 1 + 50 T + p^{3} T^{2} \)
19 \( 1 - 74 T + p^{3} T^{2} \)
29 \( 1 - 7 T + p^{3} T^{2} \)
31 \( 1 + 273 T + p^{3} T^{2} \)
37 \( 1 - 4 T + p^{3} T^{2} \)
41 \( 1 - 3 p T + p^{3} T^{2} \)
43 \( 1 - 152 T + p^{3} T^{2} \)
47 \( 1 - 75 T + p^{3} T^{2} \)
53 \( 1 + 86 T + p^{3} T^{2} \)
59 \( 1 - 444 T + p^{3} T^{2} \)
61 \( 1 + 262 T + p^{3} T^{2} \)
67 \( 1 + 764 T + p^{3} T^{2} \)
71 \( 1 + 21 T + p^{3} T^{2} \)
73 \( 1 - 681 T + p^{3} T^{2} \)
79 \( 1 - 426 T + p^{3} T^{2} \)
83 \( 1 + 902 T + p^{3} T^{2} \)
89 \( 1 + 1272 T + p^{3} T^{2} \)
97 \( 1 + 342 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.243439373511605307450673891777, −8.684543560371272273540195706014, −7.51501188274117799714930098266, −6.86605868644119456590286855080, −5.94179455336133752149891559931, −4.86785875036804402741617153646, −3.82673191127467633470182714134, −2.80505058016667897649683502519, −2.03265027072963140958805296244, −1.37240600570326253455645671063, 1.37240600570326253455645671063, 2.03265027072963140958805296244, 2.80505058016667897649683502519, 3.82673191127467633470182714134, 4.86785875036804402741617153646, 5.94179455336133752149891559931, 6.86605868644119456590286855080, 7.51501188274117799714930098266, 8.684543560371272273540195706014, 9.243439373511605307450673891777

Graph of the $Z$-function along the critical line