Properties

Label 2-1472-1.1-c3-0-93
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s + 6·5-s + 8·7-s − 2·9-s + 34·11-s + 57·13-s − 30·15-s − 80·17-s − 70·19-s − 40·21-s − 23·23-s − 89·25-s + 145·27-s − 245·29-s − 103·31-s − 170·33-s + 48·35-s + 298·37-s − 285·39-s + 95·41-s + 88·43-s − 12·45-s + 357·47-s − 279·49-s + 400·51-s + 414·53-s + 204·55-s + ⋯
L(s)  = 1  − 0.962·3-s + 0.536·5-s + 0.431·7-s − 0.0740·9-s + 0.931·11-s + 1.21·13-s − 0.516·15-s − 1.14·17-s − 0.845·19-s − 0.415·21-s − 0.208·23-s − 0.711·25-s + 1.03·27-s − 1.56·29-s − 0.596·31-s − 0.896·33-s + 0.231·35-s + 1.32·37-s − 1.17·39-s + 0.361·41-s + 0.312·43-s − 0.0397·45-s + 1.10·47-s − 0.813·49-s + 1.09·51-s + 1.07·53-s + 0.500·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + p T \)
good3 \( 1 + 5 T + p^{3} T^{2} \)
5 \( 1 - 6 T + p^{3} T^{2} \)
7 \( 1 - 8 T + p^{3} T^{2} \)
11 \( 1 - 34 T + p^{3} T^{2} \)
13 \( 1 - 57 T + p^{3} T^{2} \)
17 \( 1 + 80 T + p^{3} T^{2} \)
19 \( 1 + 70 T + p^{3} T^{2} \)
29 \( 1 + 245 T + p^{3} T^{2} \)
31 \( 1 + 103 T + p^{3} T^{2} \)
37 \( 1 - 298 T + p^{3} T^{2} \)
41 \( 1 - 95 T + p^{3} T^{2} \)
43 \( 1 - 88 T + p^{3} T^{2} \)
47 \( 1 - 357 T + p^{3} T^{2} \)
53 \( 1 - 414 T + p^{3} T^{2} \)
59 \( 1 + 408 T + p^{3} T^{2} \)
61 \( 1 + 822 T + p^{3} T^{2} \)
67 \( 1 - 926 T + p^{3} T^{2} \)
71 \( 1 + 335 T + p^{3} T^{2} \)
73 \( 1 + 899 T + p^{3} T^{2} \)
79 \( 1 - 1322 T + p^{3} T^{2} \)
83 \( 1 + 36 T + p^{3} T^{2} \)
89 \( 1 + 460 T + p^{3} T^{2} \)
97 \( 1 + 964 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.913372105935064812788397949701, −7.968263196450368110369048856655, −6.84035437951016604983368149434, −6.05509037548798634364791395453, −5.74707121563794558767063188894, −4.52209216382918534935933174010, −3.80169919932536226185812990674, −2.25187514571189844795083366921, −1.28793352744237295668044474133, 0, 1.28793352744237295668044474133, 2.25187514571189844795083366921, 3.80169919932536226185812990674, 4.52209216382918534935933174010, 5.74707121563794558767063188894, 6.05509037548798634364791395453, 6.84035437951016604983368149434, 7.968263196450368110369048856655, 8.913372105935064812788397949701

Graph of the $Z$-function along the critical line