Properties

Label 2-1472-1.1-c3-0-92
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.963·3-s − 5.79·5-s + 15.5·7-s − 26.0·9-s + 25.2·11-s − 27.0·13-s + 5.58·15-s + 75.9·17-s − 27.9·19-s − 15.0·21-s − 23·23-s − 91.3·25-s + 51.1·27-s − 141.·29-s + 318.·31-s − 24.3·33-s − 90.4·35-s − 35.1·37-s + 26.0·39-s − 20.6·41-s − 181.·43-s + 151.·45-s + 423.·47-s − 99.8·49-s − 73.1·51-s − 167.·53-s − 146.·55-s + ⋯
L(s)  = 1  − 0.185·3-s − 0.518·5-s + 0.841·7-s − 0.965·9-s + 0.693·11-s − 0.576·13-s + 0.0961·15-s + 1.08·17-s − 0.337·19-s − 0.156·21-s − 0.208·23-s − 0.731·25-s + 0.364·27-s − 0.908·29-s + 1.84·31-s − 0.128·33-s − 0.436·35-s − 0.156·37-s + 0.106·39-s − 0.0786·41-s − 0.643·43-s + 0.500·45-s + 1.31·47-s − 0.291·49-s − 0.200·51-s − 0.434·53-s − 0.359·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 + 0.963T + 27T^{2} \)
5 \( 1 + 5.79T + 125T^{2} \)
7 \( 1 - 15.5T + 343T^{2} \)
11 \( 1 - 25.2T + 1.33e3T^{2} \)
13 \( 1 + 27.0T + 2.19e3T^{2} \)
17 \( 1 - 75.9T + 4.91e3T^{2} \)
19 \( 1 + 27.9T + 6.85e3T^{2} \)
29 \( 1 + 141.T + 2.43e4T^{2} \)
31 \( 1 - 318.T + 2.97e4T^{2} \)
37 \( 1 + 35.1T + 5.06e4T^{2} \)
41 \( 1 + 20.6T + 6.89e4T^{2} \)
43 \( 1 + 181.T + 7.95e4T^{2} \)
47 \( 1 - 423.T + 1.03e5T^{2} \)
53 \( 1 + 167.T + 1.48e5T^{2} \)
59 \( 1 - 72.6T + 2.05e5T^{2} \)
61 \( 1 - 744.T + 2.26e5T^{2} \)
67 \( 1 + 538.T + 3.00e5T^{2} \)
71 \( 1 + 737.T + 3.57e5T^{2} \)
73 \( 1 - 4.93T + 3.89e5T^{2} \)
79 \( 1 - 216.T + 4.93e5T^{2} \)
83 \( 1 + 1.47e3T + 5.71e5T^{2} \)
89 \( 1 - 1.09e3T + 7.04e5T^{2} \)
97 \( 1 + 633.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.543778684343953999427425212057, −8.025483896111666383238968768789, −7.24874463105913302325710790459, −6.18099746135005925089254630881, −5.41738309295523232382071590759, −4.52409747908973660481649656853, −3.61467878951172875445477524100, −2.50877504333493819021099835409, −1.26383031288071616136291189976, 0, 1.26383031288071616136291189976, 2.50877504333493819021099835409, 3.61467878951172875445477524100, 4.52409747908973660481649656853, 5.41738309295523232382071590759, 6.18099746135005925089254630881, 7.24874463105913302325710790459, 8.025483896111666383238968768789, 8.543778684343953999427425212057

Graph of the $Z$-function along the critical line