Properties

Label 2-1472-1.1-c3-0-70
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·3-s + 4·5-s + 4·7-s + 37·9-s + 26·11-s − 70·13-s + 32·15-s + 94·17-s + 54·19-s + 32·21-s + 23·23-s − 109·25-s + 80·27-s + 86·29-s + 144·31-s + 208·33-s + 16·35-s + 172·37-s − 560·39-s − 42·41-s + 386·43-s + 148·45-s + 80·47-s − 327·49-s + 752·51-s + 108·53-s + 104·55-s + ⋯
L(s)  = 1  + 1.53·3-s + 0.357·5-s + 0.215·7-s + 1.37·9-s + 0.712·11-s − 1.49·13-s + 0.550·15-s + 1.34·17-s + 0.652·19-s + 0.332·21-s + 0.208·23-s − 0.871·25-s + 0.570·27-s + 0.550·29-s + 0.834·31-s + 1.09·33-s + 0.0772·35-s + 0.764·37-s − 2.29·39-s − 0.159·41-s + 1.36·43-s + 0.490·45-s + 0.248·47-s − 0.953·49-s + 2.06·51-s + 0.279·53-s + 0.254·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.712877388\)
\(L(\frac12)\) \(\approx\) \(4.712877388\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - p T \)
good3 \( 1 - 8 T + p^{3} T^{2} \)
5 \( 1 - 4 T + p^{3} T^{2} \)
7 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 - 26 T + p^{3} T^{2} \)
13 \( 1 + 70 T + p^{3} T^{2} \)
17 \( 1 - 94 T + p^{3} T^{2} \)
19 \( 1 - 54 T + p^{3} T^{2} \)
29 \( 1 - 86 T + p^{3} T^{2} \)
31 \( 1 - 144 T + p^{3} T^{2} \)
37 \( 1 - 172 T + p^{3} T^{2} \)
41 \( 1 + 42 T + p^{3} T^{2} \)
43 \( 1 - 386 T + p^{3} T^{2} \)
47 \( 1 - 80 T + p^{3} T^{2} \)
53 \( 1 - 108 T + p^{3} T^{2} \)
59 \( 1 - 164 T + p^{3} T^{2} \)
61 \( 1 - 400 T + p^{3} T^{2} \)
67 \( 1 - 398 T + p^{3} T^{2} \)
71 \( 1 - 320 T + p^{3} T^{2} \)
73 \( 1 + 810 T + p^{3} T^{2} \)
79 \( 1 - 204 T + p^{3} T^{2} \)
83 \( 1 - 102 T + p^{3} T^{2} \)
89 \( 1 - 1018 T + p^{3} T^{2} \)
97 \( 1 + 1370 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.305161529232474985499472418452, −8.248654559174372915651107657340, −7.71072292041571850280919451817, −7.01708387699166162135683748581, −5.83216958665214568078447162788, −4.81068387428905355369317952885, −3.83061987870611143605789193892, −2.91880776003984053358801854354, −2.17829734590745984451578900188, −1.04516211764136672006645447446, 1.04516211764136672006645447446, 2.17829734590745984451578900188, 2.91880776003984053358801854354, 3.83061987870611143605789193892, 4.81068387428905355369317952885, 5.83216958665214568078447162788, 7.01708387699166162135683748581, 7.71072292041571850280919451817, 8.248654559174372915651107657340, 9.305161529232474985499472418452

Graph of the $Z$-function along the critical line