Properties

Label 2-1472-1.1-c3-0-49
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.405·3-s − 5.36·5-s + 18.2·7-s − 26.8·9-s + 45.3·11-s + 82.2·13-s + 2.17·15-s − 5.01·17-s − 25.6·19-s − 7.39·21-s + 23·23-s − 96.2·25-s + 21.8·27-s − 43.7·29-s + 336.·31-s − 18.4·33-s − 97.6·35-s + 246.·37-s − 33.3·39-s − 488.·41-s + 505.·43-s + 143.·45-s − 444.·47-s − 11.2·49-s + 2.03·51-s − 549.·53-s − 243.·55-s + ⋯
L(s)  = 1  − 0.0780·3-s − 0.479·5-s + 0.983·7-s − 0.993·9-s + 1.24·11-s + 1.75·13-s + 0.0374·15-s − 0.0715·17-s − 0.310·19-s − 0.0768·21-s + 0.208·23-s − 0.769·25-s + 0.155·27-s − 0.280·29-s + 1.94·31-s − 0.0970·33-s − 0.471·35-s + 1.09·37-s − 0.136·39-s − 1.86·41-s + 1.79·43-s + 0.476·45-s − 1.38·47-s − 0.0326·49-s + 0.00558·51-s − 1.42·53-s − 0.596·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.363175476\)
\(L(\frac12)\) \(\approx\) \(2.363175476\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 0.405T + 27T^{2} \)
5 \( 1 + 5.36T + 125T^{2} \)
7 \( 1 - 18.2T + 343T^{2} \)
11 \( 1 - 45.3T + 1.33e3T^{2} \)
13 \( 1 - 82.2T + 2.19e3T^{2} \)
17 \( 1 + 5.01T + 4.91e3T^{2} \)
19 \( 1 + 25.6T + 6.85e3T^{2} \)
29 \( 1 + 43.7T + 2.43e4T^{2} \)
31 \( 1 - 336.T + 2.97e4T^{2} \)
37 \( 1 - 246.T + 5.06e4T^{2} \)
41 \( 1 + 488.T + 6.89e4T^{2} \)
43 \( 1 - 505.T + 7.95e4T^{2} \)
47 \( 1 + 444.T + 1.03e5T^{2} \)
53 \( 1 + 549.T + 1.48e5T^{2} \)
59 \( 1 + 144.T + 2.05e5T^{2} \)
61 \( 1 - 360.T + 2.26e5T^{2} \)
67 \( 1 + 142.T + 3.00e5T^{2} \)
71 \( 1 - 206.T + 3.57e5T^{2} \)
73 \( 1 - 917.T + 3.89e5T^{2} \)
79 \( 1 + 1.16e3T + 4.93e5T^{2} \)
83 \( 1 + 320.T + 5.71e5T^{2} \)
89 \( 1 - 1.12e3T + 7.04e5T^{2} \)
97 \( 1 + 134.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.856123002532946759888395582652, −8.394706321536704180078117872120, −7.77972452861556240985555004157, −6.44089652696802742643442200356, −6.07283462517296250855576113434, −4.85987588093021200043826591492, −4.03269682935774204073371397074, −3.19493439463206085987331740582, −1.76935253926689321816642774912, −0.800444164613185846375939405987, 0.800444164613185846375939405987, 1.76935253926689321816642774912, 3.19493439463206085987331740582, 4.03269682935774204073371397074, 4.85987588093021200043826591492, 6.07283462517296250855576113434, 6.44089652696802742643442200356, 7.77972452861556240985555004157, 8.394706321536704180078117872120, 8.856123002532946759888395582652

Graph of the $Z$-function along the critical line