Properties

Label 2-1472-1.1-c3-0-33
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.87·3-s − 13.0·5-s − 35.1·7-s + 35.0·9-s − 66.4·11-s + 40.5·13-s + 103.·15-s + 39.8·17-s − 93.1·19-s + 276.·21-s − 23·23-s + 46.1·25-s − 63.0·27-s − 234.·29-s + 226.·31-s + 523.·33-s + 459.·35-s + 275.·37-s − 318.·39-s + 59.0·41-s − 184.·43-s − 457.·45-s + 506.·47-s + 889.·49-s − 313.·51-s + 8.25·53-s + 869.·55-s + ⋯
L(s)  = 1  − 1.51·3-s − 1.17·5-s − 1.89·7-s + 1.29·9-s − 1.82·11-s + 0.864·13-s + 1.77·15-s + 0.568·17-s − 1.12·19-s + 2.87·21-s − 0.208·23-s + 0.369·25-s − 0.449·27-s − 1.50·29-s + 1.31·31-s + 2.76·33-s + 2.21·35-s + 1.22·37-s − 1.30·39-s + 0.224·41-s − 0.652·43-s − 1.51·45-s + 1.57·47-s + 2.59·49-s − 0.861·51-s + 0.0213·53-s + 2.13·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 + 7.87T + 27T^{2} \)
5 \( 1 + 13.0T + 125T^{2} \)
7 \( 1 + 35.1T + 343T^{2} \)
11 \( 1 + 66.4T + 1.33e3T^{2} \)
13 \( 1 - 40.5T + 2.19e3T^{2} \)
17 \( 1 - 39.8T + 4.91e3T^{2} \)
19 \( 1 + 93.1T + 6.85e3T^{2} \)
29 \( 1 + 234.T + 2.43e4T^{2} \)
31 \( 1 - 226.T + 2.97e4T^{2} \)
37 \( 1 - 275.T + 5.06e4T^{2} \)
41 \( 1 - 59.0T + 6.89e4T^{2} \)
43 \( 1 + 184.T + 7.95e4T^{2} \)
47 \( 1 - 506.T + 1.03e5T^{2} \)
53 \( 1 - 8.25T + 1.48e5T^{2} \)
59 \( 1 - 483.T + 2.05e5T^{2} \)
61 \( 1 + 411.T + 2.26e5T^{2} \)
67 \( 1 + 324.T + 3.00e5T^{2} \)
71 \( 1 - 674.T + 3.57e5T^{2} \)
73 \( 1 + 752.T + 3.89e5T^{2} \)
79 \( 1 + 1.12e3T + 4.93e5T^{2} \)
83 \( 1 - 136.T + 5.71e5T^{2} \)
89 \( 1 + 944.T + 7.04e5T^{2} \)
97 \( 1 - 271.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.669910736923300202928062480155, −7.73399009004740602842935110567, −7.02265604759270307343278668882, −6.03726470406550353149570859634, −5.75083290751400005618936916304, −4.51309614775891442840290743931, −3.68627005356804579590516419731, −2.69766523348999238617496922337, −0.62261733248286535705815709966, 0, 0.62261733248286535705815709966, 2.69766523348999238617496922337, 3.68627005356804579590516419731, 4.51309614775891442840290743931, 5.75083290751400005618936916304, 6.03726470406550353149570859634, 7.02265604759270307343278668882, 7.73399009004740602842935110567, 8.669910736923300202928062480155

Graph of the $Z$-function along the critical line