L(s) = 1 | − 7.87·3-s − 13.0·5-s − 35.1·7-s + 35.0·9-s − 66.4·11-s + 40.5·13-s + 103.·15-s + 39.8·17-s − 93.1·19-s + 276.·21-s − 23·23-s + 46.1·25-s − 63.0·27-s − 234.·29-s + 226.·31-s + 523.·33-s + 459.·35-s + 275.·37-s − 318.·39-s + 59.0·41-s − 184.·43-s − 457.·45-s + 506.·47-s + 889.·49-s − 313.·51-s + 8.25·53-s + 869.·55-s + ⋯ |
L(s) = 1 | − 1.51·3-s − 1.17·5-s − 1.89·7-s + 1.29·9-s − 1.82·11-s + 0.864·13-s + 1.77·15-s + 0.568·17-s − 1.12·19-s + 2.87·21-s − 0.208·23-s + 0.369·25-s − 0.449·27-s − 1.50·29-s + 1.31·31-s + 2.76·33-s + 2.21·35-s + 1.22·37-s − 1.30·39-s + 0.224·41-s − 0.652·43-s − 1.51·45-s + 1.57·47-s + 2.59·49-s − 0.861·51-s + 0.0213·53-s + 2.13·55-s + ⋯ |
Λ(s)=(=(1472s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1472s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+23T |
good | 3 | 1+7.87T+27T2 |
| 5 | 1+13.0T+125T2 |
| 7 | 1+35.1T+343T2 |
| 11 | 1+66.4T+1.33e3T2 |
| 13 | 1−40.5T+2.19e3T2 |
| 17 | 1−39.8T+4.91e3T2 |
| 19 | 1+93.1T+6.85e3T2 |
| 29 | 1+234.T+2.43e4T2 |
| 31 | 1−226.T+2.97e4T2 |
| 37 | 1−275.T+5.06e4T2 |
| 41 | 1−59.0T+6.89e4T2 |
| 43 | 1+184.T+7.95e4T2 |
| 47 | 1−506.T+1.03e5T2 |
| 53 | 1−8.25T+1.48e5T2 |
| 59 | 1−483.T+2.05e5T2 |
| 61 | 1+411.T+2.26e5T2 |
| 67 | 1+324.T+3.00e5T2 |
| 71 | 1−674.T+3.57e5T2 |
| 73 | 1+752.T+3.89e5T2 |
| 79 | 1+1.12e3T+4.93e5T2 |
| 83 | 1−136.T+5.71e5T2 |
| 89 | 1+944.T+7.04e5T2 |
| 97 | 1−271.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.669910736923300202928062480155, −7.73399009004740602842935110567, −7.02265604759270307343278668882, −6.03726470406550353149570859634, −5.75083290751400005618936916304, −4.51309614775891442840290743931, −3.68627005356804579590516419731, −2.69766523348999238617496922337, −0.62261733248286535705815709966, 0,
0.62261733248286535705815709966, 2.69766523348999238617496922337, 3.68627005356804579590516419731, 4.51309614775891442840290743931, 5.75083290751400005618936916304, 6.03726470406550353149570859634, 7.02265604759270307343278668882, 7.73399009004740602842935110567, 8.669910736923300202928062480155