Properties

Label 2-1472-1.1-c3-0-32
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.13·3-s − 14.8·5-s − 19.8·7-s + 10.6·9-s + 55.2·11-s + 1.83·13-s − 91.1·15-s − 130.·17-s + 17.3·19-s − 121.·21-s − 23·23-s + 95.5·25-s − 100.·27-s − 77.6·29-s + 206.·31-s + 338.·33-s + 294.·35-s + 251.·37-s + 11.2·39-s − 157.·41-s + 336.·43-s − 157.·45-s + 488.·47-s + 51.2·49-s − 798.·51-s − 562.·53-s − 820.·55-s + ⋯
L(s)  = 1  + 1.18·3-s − 1.32·5-s − 1.07·7-s + 0.393·9-s + 1.51·11-s + 0.0391·13-s − 1.56·15-s − 1.85·17-s + 0.208·19-s − 1.26·21-s − 0.208·23-s + 0.764·25-s − 0.716·27-s − 0.497·29-s + 1.19·31-s + 1.78·33-s + 1.42·35-s + 1.11·37-s + 0.0462·39-s − 0.598·41-s + 1.19·43-s − 0.522·45-s + 1.51·47-s + 0.149·49-s − 2.19·51-s − 1.45·53-s − 2.01·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.820150608\)
\(L(\frac12)\) \(\approx\) \(1.820150608\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + 23T \)
good3 \( 1 - 6.13T + 27T^{2} \)
5 \( 1 + 14.8T + 125T^{2} \)
7 \( 1 + 19.8T + 343T^{2} \)
11 \( 1 - 55.2T + 1.33e3T^{2} \)
13 \( 1 - 1.83T + 2.19e3T^{2} \)
17 \( 1 + 130.T + 4.91e3T^{2} \)
19 \( 1 - 17.3T + 6.85e3T^{2} \)
29 \( 1 + 77.6T + 2.43e4T^{2} \)
31 \( 1 - 206.T + 2.97e4T^{2} \)
37 \( 1 - 251.T + 5.06e4T^{2} \)
41 \( 1 + 157.T + 6.89e4T^{2} \)
43 \( 1 - 336.T + 7.95e4T^{2} \)
47 \( 1 - 488.T + 1.03e5T^{2} \)
53 \( 1 + 562.T + 1.48e5T^{2} \)
59 \( 1 - 125.T + 2.05e5T^{2} \)
61 \( 1 + 163.T + 2.26e5T^{2} \)
67 \( 1 - 769.T + 3.00e5T^{2} \)
71 \( 1 - 113.T + 3.57e5T^{2} \)
73 \( 1 + 747.T + 3.89e5T^{2} \)
79 \( 1 - 1.11e3T + 4.93e5T^{2} \)
83 \( 1 - 988.T + 5.71e5T^{2} \)
89 \( 1 - 1.38e3T + 7.04e5T^{2} \)
97 \( 1 - 1.18e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.254424924620961385307549613914, −8.379759358302357595586987145074, −7.67392751654585182468758675870, −6.78728281928981502294331232085, −6.19628626488318017494447137400, −4.44176828928177770709578621535, −3.89916772054568449117780305025, −3.20224447976282832124567360278, −2.20519919010694955868953873730, −0.60354547107632897232473418140, 0.60354547107632897232473418140, 2.20519919010694955868953873730, 3.20224447976282832124567360278, 3.89916772054568449117780305025, 4.44176828928177770709578621535, 6.19628626488318017494447137400, 6.78728281928981502294331232085, 7.67392751654585182468758675870, 8.379759358302357595586987145074, 9.254424924620961385307549613914

Graph of the $Z$-function along the critical line