Properties

Label 2-1472-1.1-c3-0-10
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7.81·3-s + 3.75·5-s − 31.3·7-s + 34.0·9-s + 11.5·11-s + 48.7·13-s − 29.3·15-s − 46.4·17-s − 77.9·19-s + 245.·21-s + 23·23-s − 110.·25-s − 54.8·27-s + 212.·29-s − 207.·31-s − 89.8·33-s − 117.·35-s − 197.·37-s − 380.·39-s − 383.·41-s − 437.·43-s + 127.·45-s + 156.·47-s + 642.·49-s + 362.·51-s − 12.0·53-s + 43.1·55-s + ⋯
L(s)  = 1  − 1.50·3-s + 0.335·5-s − 1.69·7-s + 1.25·9-s + 0.315·11-s + 1.03·13-s − 0.504·15-s − 0.662·17-s − 0.940·19-s + 2.54·21-s + 0.208·23-s − 0.887·25-s − 0.390·27-s + 1.36·29-s − 1.20·31-s − 0.474·33-s − 0.568·35-s − 0.878·37-s − 1.56·39-s − 1.46·41-s − 1.55·43-s + 0.422·45-s + 0.484·47-s + 1.87·49-s + 0.995·51-s − 0.0311·53-s + 0.105·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4186893239\)
\(L(\frac12)\) \(\approx\) \(0.4186893239\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 + 7.81T + 27T^{2} \)
5 \( 1 - 3.75T + 125T^{2} \)
7 \( 1 + 31.3T + 343T^{2} \)
11 \( 1 - 11.5T + 1.33e3T^{2} \)
13 \( 1 - 48.7T + 2.19e3T^{2} \)
17 \( 1 + 46.4T + 4.91e3T^{2} \)
19 \( 1 + 77.9T + 6.85e3T^{2} \)
29 \( 1 - 212.T + 2.43e4T^{2} \)
31 \( 1 + 207.T + 2.97e4T^{2} \)
37 \( 1 + 197.T + 5.06e4T^{2} \)
41 \( 1 + 383.T + 6.89e4T^{2} \)
43 \( 1 + 437.T + 7.95e4T^{2} \)
47 \( 1 - 156.T + 1.03e5T^{2} \)
53 \( 1 + 12.0T + 1.48e5T^{2} \)
59 \( 1 + 559.T + 2.05e5T^{2} \)
61 \( 1 - 37.7T + 2.26e5T^{2} \)
67 \( 1 + 30.4T + 3.00e5T^{2} \)
71 \( 1 - 398.T + 3.57e5T^{2} \)
73 \( 1 + 877.T + 3.89e5T^{2} \)
79 \( 1 + 632.T + 4.93e5T^{2} \)
83 \( 1 - 622.T + 5.71e5T^{2} \)
89 \( 1 + 780.T + 7.04e5T^{2} \)
97 \( 1 - 964.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.230835804297417612702195818788, −8.536857258049946969045924264032, −7.02378220182373008668581803463, −6.42939238021668107673504958052, −6.11912177283485649586456308534, −5.18828726412000153136090200568, −4.10194290510178793733911784444, −3.19393518710012290360568154097, −1.68381061662655698593117081767, −0.33982794010532946786805569606, 0.33982794010532946786805569606, 1.68381061662655698593117081767, 3.19393518710012290360568154097, 4.10194290510178793733911784444, 5.18828726412000153136090200568, 6.11912177283485649586456308534, 6.42939238021668107673504958052, 7.02378220182373008668581803463, 8.536857258049946969045924264032, 9.230835804297417612702195818788

Graph of the $Z$-function along the critical line