Properties

Label 2-1472-1.1-c1-0-33
Degree $2$
Conductor $1472$
Sign $-1$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s − 2·9-s + 13-s − 6·17-s − 2·19-s − 2·21-s − 23-s − 5·25-s + 5·27-s + 3·29-s + 5·31-s − 8·37-s − 39-s + 3·41-s − 8·43-s + 9·47-s − 3·49-s + 6·51-s − 6·53-s + 2·57-s + 12·59-s − 14·61-s − 4·63-s − 8·67-s + 69-s − 15·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s − 2/3·9-s + 0.277·13-s − 1.45·17-s − 0.458·19-s − 0.436·21-s − 0.208·23-s − 25-s + 0.962·27-s + 0.557·29-s + 0.898·31-s − 1.31·37-s − 0.160·39-s + 0.468·41-s − 1.21·43-s + 1.31·47-s − 3/7·49-s + 0.840·51-s − 0.824·53-s + 0.264·57-s + 1.56·59-s − 1.79·61-s − 0.503·63-s − 0.977·67-s + 0.120·69-s − 1.78·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-1$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 + p T^{2} \)
7 \( 1 - 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 3 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 15 T + p T^{2} \)
73 \( 1 + 7 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.808684280597188673489137150163, −8.521126016011552017519779837642, −7.48540449454009034199503917488, −6.49198643404353442573205248031, −5.87052871719786078173316926452, −4.88913521426515505557620586765, −4.19829185799095109044352510087, −2.83296492787843542508096840013, −1.68213519834932597828765870338, 0, 1.68213519834932597828765870338, 2.83296492787843542508096840013, 4.19829185799095109044352510087, 4.88913521426515505557620586765, 5.87052871719786078173316926452, 6.49198643404353442573205248031, 7.48540449454009034199503917488, 8.521126016011552017519779837642, 8.808684280597188673489137150163

Graph of the $Z$-function along the critical line