L(s) = 1 | + (1.5 + 2.59i)2-s + (1.5 − 2.59i)3-s + (−0.5 + 0.866i)4-s + (9 + 15.5i)5-s + 9·6-s + 21·8-s + (−4.5 − 7.79i)9-s + (−27 + 46.7i)10-s + (18 − 31.1i)11-s + (1.50 + 2.59i)12-s − 34·13-s + 54·15-s + (35.5 + 61.4i)16-s + (−21 + 36.3i)17-s + (13.5 − 23.3i)18-s + (62 + 107. i)19-s + ⋯ |
L(s) = 1 | + (0.530 + 0.918i)2-s + (0.288 − 0.499i)3-s + (−0.0625 + 0.108i)4-s + (0.804 + 1.39i)5-s + 0.612·6-s + 0.928·8-s + (−0.166 − 0.288i)9-s + (−0.853 + 1.47i)10-s + (0.493 − 0.854i)11-s + (0.0360 + 0.0625i)12-s − 0.725·13-s + 0.929·15-s + (0.554 + 0.960i)16-s + (−0.299 + 0.518i)17-s + (0.176 − 0.306i)18-s + (0.748 + 1.29i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.42811 + 1.61513i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.42811 + 1.61513i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.5 - 2.59i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (-9 - 15.5i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-18 + 31.1i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 34T + 2.19e3T^{2} \) |
| 17 | \( 1 + (21 - 36.3i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-62 - 107. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 102T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-80 + 138. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (199 + 344. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 318T + 6.89e4T^{2} \) |
| 43 | \( 1 + 268T + 7.95e4T^{2} \) |
| 47 | \( 1 + (120 + 207. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-249 + 431. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-66 + 114. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (199 + 344. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (46 - 79.6i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 720T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-251 + 434. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-512 - 886. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 204T + 5.71e5T^{2} \) |
| 89 | \( 1 + (177 + 306. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 286T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.30624328202591267409369612700, −11.84856313581763872790078226621, −10.64483611414046764699936459774, −9.830715025281998420737590511703, −8.196729264748521278575518083002, −7.07073344101855824087974020862, −6.37777405805474349100844875411, −5.51295160454589611163370816242, −3.51970122368449259145734785705, −1.93437003949380149975697212137,
1.46416920708817542687523475314, 2.85178390003630857089305525650, 4.62594930458511973997169298755, 4.98385409893098249065032521892, 7.03892974771903186343672133942, 8.570232827982493879575114273638, 9.537668631563427251780136069498, 10.25129650512381807787937548984, 11.74873248680591459369783079130, 12.29284372985196174583039302105