L(s) = 1 | + (2.63 + 4.56i)2-s + (1.5 − 2.59i)3-s + (−9.91 + 17.1i)4-s + (5.27 + 9.13i)5-s + 15.8·6-s − 62.3·8-s + (−4.5 − 7.79i)9-s + (−27.8 + 48.1i)10-s + (−17.3 + 30.0i)11-s + (29.7 + 51.5i)12-s + 37.2·13-s + 31.6·15-s + (−85.2 − 147. i)16-s + (−5.27 + 9.13i)17-s + (23.7 − 41.1i)18-s + (−29.2 − 50.7i)19-s + ⋯ |
L(s) = 1 | + (0.932 + 1.61i)2-s + (0.288 − 0.499i)3-s + (−1.23 + 2.14i)4-s + (0.471 + 0.817i)5-s + 1.07·6-s − 2.75·8-s + (−0.166 − 0.288i)9-s + (−0.879 + 1.52i)10-s + (−0.476 + 0.824i)11-s + (0.715 + 1.23i)12-s + 0.795·13-s + 0.544·15-s + (−1.33 − 2.30i)16-s + (−0.0752 + 0.130i)17-s + (0.310 − 0.538i)18-s + (−0.353 − 0.612i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.342595 + 2.68842i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.342595 + 2.68842i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-2.63 - 4.56i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (-5.27 - 9.13i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (17.3 - 30.0i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 37.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + (5.27 - 9.13i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (29.2 + 50.7i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-62.6 - 108. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 35.4T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-145. + 252. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-129. - 225. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 338.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 6.80T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-125. - 217. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-268. + 464. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (17.9 - 31.0i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-28.8 - 50.0i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (240. - 417. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 363.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-290. + 503. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-346. - 600. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.33e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (176. + 305. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 1.44e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.36857185513095289874498632795, −12.70276875293024697409040702593, −11.29125059589653279175666388639, −9.654050559588590400897881879463, −8.367227899367683212636453616432, −7.40380604244059676606981974904, −6.59551480143582557645161233892, −5.71328713187058663646586476036, −4.27894490994788211800145719862, −2.76177925592101989715167850422,
1.04052776790434379072812831781, 2.63698755685416889172051284077, 3.89248590536179903575297532426, 5.00582069417998540101723612783, 5.94096839688211398652261785144, 8.546031433195197709454924987401, 9.285649981511657935441727646930, 10.48425616517487093714610270113, 11.00335995766181272641009538412, 12.28439077167244229891889489414