L(s) = 1 | + (−2 − 3.46i)2-s + (−1.5 + 2.59i)3-s + (−3.99 + 6.92i)4-s + (−9 − 15.5i)5-s + 12·6-s + (−4.5 − 7.79i)9-s + (−36 + 62.3i)10-s + (25 − 43.3i)11-s + (−12.0 − 20.7i)12-s − 36·13-s + 54·15-s + (31.9 + 55.4i)16-s + (−63 + 109. i)17-s + (−18 + 31.1i)18-s + (36 + 62.3i)19-s + 144·20-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.288 + 0.499i)3-s + (−0.499 + 0.866i)4-s + (−0.804 − 1.39i)5-s + 0.816·6-s + (−0.166 − 0.288i)9-s + (−1.13 + 1.97i)10-s + (0.685 − 1.18i)11-s + (−0.288 − 0.499i)12-s − 0.768·13-s + 0.929·15-s + (0.499 + 0.866i)16-s + (−0.898 + 1.55i)17-s + (−0.235 + 0.408i)18-s + (0.434 + 0.752i)19-s + 1.60·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 - 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (2 + 3.46i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (9 + 15.5i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-25 + 43.3i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 36T + 2.19e3T^{2} \) |
| 17 | \( 1 + (63 - 109. i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-36 - 62.3i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (7 + 12.1i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 158T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-18 + 31.1i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-81 - 140. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 270T + 6.89e4T^{2} \) |
| 43 | \( 1 + 324T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-36 - 62.3i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-11 + 19.0i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (234 - 405. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (396 + 685. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (116 - 200. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 734T + 3.57e5T^{2} \) |
| 73 | \( 1 + (90 - 155. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (118 + 204. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 36T + 5.71e5T^{2} \) |
| 89 | \( 1 + (117 + 202. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 468T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.79686476357514307127734961111, −10.80167456299345189206957689926, −9.794404910288988365472095613191, −8.713437068392087788187797026833, −8.280910372127769070634519980474, −6.07962032875324163357809601084, −4.54117402065392770454252524608, −3.47096534539461245038430210247, −1.33704890239877054658380872613, 0,
2.77723989039261325963493674381, 4.81945259426370886347912121054, 6.61204974425279908054834065742, 7.03951605894775838375946492292, 7.65761356988255321816198631900, 9.095293354547065102967212782462, 10.14595375311847695350886023968, 11.53639251519702535670550255020, 12.07653512680595501408641903162