L(s) = 1 | + (−1.13 − 1.97i)2-s + (1.5 − 2.59i)3-s + (1.41 − 2.44i)4-s + (−2.27 − 3.94i)5-s − 6.82·6-s − 24.6·8-s + (−4.5 − 7.79i)9-s + (−5.17 + 8.96i)10-s + (20.3 − 35.2i)11-s + (−4.23 − 7.33i)12-s − 53.2·13-s − 13.6·15-s + (16.7 + 28.9i)16-s + (2.27 − 3.94i)17-s + (−10.2 + 17.7i)18-s + (61.2 + 106. i)19-s + ⋯ |
L(s) = 1 | + (−0.402 − 0.696i)2-s + (0.288 − 0.499i)3-s + (0.176 − 0.305i)4-s + (−0.203 − 0.352i)5-s − 0.464·6-s − 1.08·8-s + (−0.166 − 0.288i)9-s + (−0.163 + 0.283i)10-s + (0.558 − 0.967i)11-s + (−0.101 − 0.176i)12-s − 1.13·13-s − 0.234·15-s + (0.261 + 0.452i)16-s + (0.0324 − 0.0562i)17-s + (−0.134 + 0.232i)18-s + (0.740 + 1.28i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.132717 + 1.04146i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.132717 + 1.04146i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.13 + 1.97i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (2.27 + 3.94i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-20.3 + 35.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 53.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-2.27 + 3.94i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-61.2 - 106. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (65.6 + 113. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 216.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (125. - 218. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (5.94 + 10.3i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 111.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 369.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (131. + 227. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-283. + 491. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-419. + 727. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (242. + 420. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-166. + 288. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 590.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (-245. + 424. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (60.8 + 105. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 609.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-359. - 622. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 637.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.08462541169472475800377453043, −11.08166019516461515463004764694, −9.983330749193190575821858559576, −9.043373294422629179109165813813, −8.021961406744231743930246604127, −6.65100765796960519966417657995, −5.45309706896929919301865269848, −3.50716187894208097559744738590, −2.02271058530053010935297252676, −0.54026771223422295548329415948,
2.58345253052760990391276098169, 4.03057493186719304582028083233, 5.58613245136338249929406973264, 7.26596724723005917917315435989, 7.47982887724004432717000564509, 9.164669312560782504395326677539, 9.601389337537380478498684589714, 11.17006749237446900051231025270, 12.00163563683544981700328628956, 13.14785560419735728219468696563