L(s) = 1 | + (0.5 + 0.866i)2-s + (1.5 − 2.59i)3-s + (3.5 − 6.06i)4-s + (−6 − 10.3i)5-s + 3·6-s + 15·8-s + (−4.5 − 7.79i)9-s + (6 − 10.3i)10-s + (−10 + 17.3i)11-s + (−10.5 − 18.1i)12-s − 84·13-s − 36·15-s + (−20.5 − 35.5i)16-s + (48 − 83.1i)17-s + (4.5 − 7.79i)18-s + (−6 − 10.3i)19-s + ⋯ |
L(s) = 1 | + (0.176 + 0.306i)2-s + (0.288 − 0.499i)3-s + (0.437 − 0.757i)4-s + (−0.536 − 0.929i)5-s + 0.204·6-s + 0.662·8-s + (−0.166 − 0.288i)9-s + (0.189 − 0.328i)10-s + (−0.274 + 0.474i)11-s + (−0.252 − 0.437i)12-s − 1.79·13-s − 0.619·15-s + (−0.320 − 0.554i)16-s + (0.684 − 1.18i)17-s + (0.0589 − 0.102i)18-s + (−0.0724 − 0.125i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.938378 - 1.41070i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.938378 - 1.41070i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.5 + 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (6 + 10.3i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (10 - 17.3i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 84T + 2.19e3T^{2} \) |
| 17 | \( 1 + (-48 + 83.1i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (6 + 10.3i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-88 - 152. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 - 58T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-132 + 228. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (129 + 223. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 6.89e4T^{2} \) |
| 43 | \( 1 - 156T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-204 - 353. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-361 + 625. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (246 - 426. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-246 - 426. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (206 - 356. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 296T + 3.57e5T^{2} \) |
| 73 | \( 1 + (120 - 207. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (388 + 672. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 924T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-372 - 644. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 168T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24102599810251475786184219010, −11.58208353125720225941805798782, −10.03627259599089634942180402394, −9.225042833989514938367429944162, −7.63775813588671663128222601371, −7.19304235928931771188543906366, −5.49843539741683864808213251907, −4.64626434302029699052319027147, −2.45786968484432981470674604666, −0.74290047392436893700699512415,
2.58161775498685181372486855816, 3.43461730909433756698421576553, 4.78428184717168352257230697998, 6.68549046020235602212343745084, 7.64317755299277191550512389863, 8.585223767735285287400664909796, 10.28203702064239206441556067341, 10.73664593773720509217393393141, 11.98256732539835819681854399140, 12.60565661471013685762165510206