L(s) = 1 | + (−1.13 − 1.97i)2-s + (−1.5 + 2.59i)3-s + (1.41 − 2.44i)4-s + (2.27 + 3.94i)5-s + 6.82·6-s − 24.6·8-s + (−4.5 − 7.79i)9-s + (5.17 − 8.96i)10-s + (20.3 − 35.2i)11-s + (4.23 + 7.33i)12-s + 53.2·13-s − 13.6·15-s + (16.7 + 28.9i)16-s + (−2.27 + 3.94i)17-s + (−10.2 + 17.7i)18-s + (−61.2 − 106. i)19-s + ⋯ |
L(s) = 1 | + (−0.402 − 0.696i)2-s + (−0.288 + 0.499i)3-s + (0.176 − 0.305i)4-s + (0.203 + 0.352i)5-s + 0.464·6-s − 1.08·8-s + (−0.166 − 0.288i)9-s + (0.163 − 0.283i)10-s + (0.558 − 0.967i)11-s + (0.101 + 0.176i)12-s + 1.13·13-s − 0.234·15-s + (0.261 + 0.452i)16-s + (−0.0324 + 0.0562i)17-s + (−0.134 + 0.232i)18-s + (−0.740 − 1.28i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.627763 - 0.943746i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.627763 - 0.943746i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.5 - 2.59i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (1.13 + 1.97i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (-2.27 - 3.94i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-20.3 + 35.2i)T + (-665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 53.2T + 2.19e3T^{2} \) |
| 17 | \( 1 + (2.27 - 3.94i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (61.2 + 106. i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (65.6 + 113. i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 216.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-125. + 218. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (5.94 + 10.3i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 111.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 369.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-131. - 227. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-283. + 491. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (419. - 727. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-242. - 420. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-166. + 288. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 590.T + 3.57e5T^{2} \) |
| 73 | \( 1 + (245. - 424. i)T + (-1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (60.8 + 105. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 609.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (359. + 622. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 637.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.82088710663114433605106961171, −11.02317145889284886776606453718, −10.53151240959775896078371737765, −9.316304869679924384025661580411, −8.541444901186451992417462657827, −6.52530525755590830632894217856, −5.85245536681459585870757937992, −4.02414526520975542504704162540, −2.54313998316529335130109602507, −0.66922079192933098214161963031,
1.66913228257120325637199557086, 3.75157181735387410894784269478, 5.61399278249297958231216988588, 6.57400547805011098065439205085, 7.56656589518672363562460124831, 8.546333973051242560177809555081, 9.532187768809379123092058292825, 10.97893431328025090804607300329, 12.11026315579936299733671212830, 12.71081044043296503003670707448