L(s) = 1 | + (−0.207 − 0.358i)2-s + (−0.5 + 0.866i)3-s + (0.914 − 1.58i)4-s + (−1.70 − 2.95i)5-s + 0.414·6-s − 1.58·8-s + (−0.499 − 0.866i)9-s + (−0.707 + 1.22i)10-s + (1 − 1.73i)11-s + (0.914 + 1.58i)12-s + 2.58·13-s + 3.41·15-s + (−1.49 − 2.59i)16-s + (1.12 − 1.94i)17-s + (−0.207 + 0.358i)18-s + (1.41 + 2.44i)19-s + ⋯ |
L(s) = 1 | + (−0.146 − 0.253i)2-s + (−0.288 + 0.499i)3-s + (0.457 − 0.791i)4-s + (−0.763 − 1.32i)5-s + 0.169·6-s − 0.560·8-s + (−0.166 − 0.288i)9-s + (−0.223 + 0.387i)10-s + (0.301 − 0.522i)11-s + (0.263 + 0.457i)12-s + 0.717·13-s + 0.881·15-s + (−0.374 − 0.649i)16-s + (0.271 − 0.471i)17-s + (−0.0488 + 0.0845i)18-s + (0.324 + 0.561i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.661837 - 0.615435i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.661837 - 0.615435i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (0.207 + 0.358i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.70 + 2.95i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.58T + 13T^{2} \) |
| 17 | \( 1 + (-1.12 + 1.94i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.41 - 2.44i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.82 - 6.63i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 6.82T + 29T^{2} \) |
| 31 | \( 1 + (-0.585 + 1.01i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2 - 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.24T + 41T^{2} \) |
| 43 | \( 1 - 5.65T + 43T^{2} \) |
| 47 | \( 1 + (-1.41 - 2.44i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.585 + 1.01i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.12 + 10.6i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.82 + 4.89i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.31T + 71T^{2} \) |
| 73 | \( 1 + (6.94 - 12.0i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.82 + 11.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + (-7.12 - 12.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.58T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57558587618559825438131320110, −11.53942670230990264215599362307, −11.07745381072034168689527576288, −9.623971350396168809469681098609, −8.974662692645919751940224408015, −7.65256890414441409205250270468, −5.97371222579920045515647232408, −5.07039082709885831225379431904, −3.63845703396218886885321011549, −1.07459413278504544289171169784,
2.67266815677563568556195034027, 3.95109035381896103845163269446, 6.15976444849922651813775743876, 7.06756730521689905533640818552, 7.66455013513348093780612950244, 8.897148800663628897534960467783, 10.68946523169918932839344130740, 11.26939569636772156558244310609, 12.20280648265466440454787800514, 13.08894874646774176484905142560