L(s) = 1 | + (4.22 − 7.31i)2-s + (−4.5 − 7.79i)3-s + (−19.6 − 34.0i)4-s + (18 − 31.1i)5-s − 76.0·6-s − 61.9·8-s + (−40.5 + 70.1i)9-s + (−152. − 263. i)10-s + (−147. − 255. i)11-s + (−177. + 306. i)12-s − 1.14e3·13-s − 324·15-s + (367. − 636. i)16-s + (−516. − 894. i)17-s + (342. + 592. i)18-s + (−1.05e3 + 1.82e3i)19-s + ⋯ |
L(s) = 1 | + (0.746 − 1.29i)2-s + (−0.288 − 0.499i)3-s + (−0.614 − 1.06i)4-s + (0.321 − 0.557i)5-s − 0.862·6-s − 0.342·8-s + (−0.166 + 0.288i)9-s + (−0.480 − 0.832i)10-s + (−0.368 − 0.637i)11-s + (−0.354 + 0.614i)12-s − 1.88·13-s − 0.371·15-s + (0.359 − 0.621i)16-s + (−0.433 − 0.750i)17-s + (0.248 + 0.431i)18-s + (−0.669 + 1.16i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.520598412\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.520598412\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-4.22 + 7.31i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (-18 + 31.1i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (147. + 255. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 1.14e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (516. + 894. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (1.05e3 - 1.82e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-320. + 555. i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 - 7.63e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-483. - 837. i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-886. + 1.53e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.19e4T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.98e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.39e4 + 2.42e4i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-3.55e3 - 6.16e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.04e4 - 1.80e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.19e4 + 2.06e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (1.73e4 + 3.00e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 2.84e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-7.64e3 - 1.32e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-3.65e4 + 6.32e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 + 3.03e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-1.80e4 + 3.12e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.53e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88959269315441161741992438957, −10.59536207767189878388814371645, −9.844235011302412812932664281277, −8.404747180072119851763403820929, −7.01453773230525388392603111734, −5.40684809445614678000790239515, −4.64426629175017178932351141628, −2.94701482287230663160190025542, −1.84892524201049896795081606936, −0.38972979076934287246565437279,
2.57759338443716562144763363260, 4.45861276921992137466740446258, 5.08375222837157653917740167971, 6.46792368311945018344141513372, 7.08836076275241121556252795694, 8.377655474402587694959674414487, 9.872105933168760621161376766547, 10.63009199973573488105341724493, 12.11316948282613906186522055902, 13.06621456514232668367918597356