Properties

Label 2-147-21.20-c5-0-25
Degree $2$
Conductor $147$
Sign $0.973 + 0.226i$
Analytic cond. $23.5764$
Root an. cond. $4.85555$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.13i·2-s + (−9.16 − 12.6i)3-s + 27.4·4-s − 95.0·5-s + (26.8 − 19.5i)6-s + 126. i·8-s + (−75.1 + 231. i)9-s − 202. i·10-s + 130. i·11-s + (−251. − 346. i)12-s + 14.6i·13-s + (870. + 1.19e3i)15-s + 608.·16-s + 640.·17-s + (−492. − 160. i)18-s + 542. i·19-s + ⋯
L(s)  = 1  + 0.377i·2-s + (−0.587 − 0.809i)3-s + 0.857·4-s − 1.70·5-s + (0.305 − 0.221i)6-s + 0.700i·8-s + (−0.309 + 0.951i)9-s − 0.641i·10-s + 0.325i·11-s + (−0.504 − 0.694i)12-s + 0.0240i·13-s + (0.999 + 1.37i)15-s + 0.593·16-s + 0.537·17-s + (−0.358 − 0.116i)18-s + 0.344i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.226i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.973 + 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $0.973 + 0.226i$
Analytic conductor: \(23.5764\)
Root analytic conductor: \(4.85555\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (146, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :5/2),\ 0.973 + 0.226i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.274191190\)
\(L(\frac12)\) \(\approx\) \(1.274191190\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (9.16 + 12.6i)T \)
7 \( 1 \)
good2 \( 1 - 2.13iT - 32T^{2} \)
5 \( 1 + 95.0T + 3.12e3T^{2} \)
11 \( 1 - 130. iT - 1.61e5T^{2} \)
13 \( 1 - 14.6iT - 3.71e5T^{2} \)
17 \( 1 - 640.T + 1.41e6T^{2} \)
19 \( 1 - 542. iT - 2.47e6T^{2} \)
23 \( 1 + 4.09e3iT - 6.43e6T^{2} \)
29 \( 1 + 3.59e3iT - 2.05e7T^{2} \)
31 \( 1 + 2.90e3iT - 2.86e7T^{2} \)
37 \( 1 + 4.34e3T + 6.93e7T^{2} \)
41 \( 1 - 1.09e4T + 1.15e8T^{2} \)
43 \( 1 - 2.05e4T + 1.47e8T^{2} \)
47 \( 1 - 8.81e3T + 2.29e8T^{2} \)
53 \( 1 - 6.97e3iT - 4.18e8T^{2} \)
59 \( 1 - 4.00e4T + 7.14e8T^{2} \)
61 \( 1 - 3.32e4iT - 8.44e8T^{2} \)
67 \( 1 - 6.43e3T + 1.35e9T^{2} \)
71 \( 1 - 3.24e4iT - 1.80e9T^{2} \)
73 \( 1 + 1.27e4iT - 2.07e9T^{2} \)
79 \( 1 - 8.59e3T + 3.07e9T^{2} \)
83 \( 1 - 3.16e4T + 3.93e9T^{2} \)
89 \( 1 + 3.19e4T + 5.58e9T^{2} \)
97 \( 1 + 1.43e5iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.10174823994321252345779556136, −11.32658676723598130305551139704, −10.52123890697435877015885741573, −8.387828475474671641769051363309, −7.64353442592631768317200857843, −6.96115686093299867908861243721, −5.79603370520326505113856399896, −4.26543791127030333260877413167, −2.54002968310498542098245279276, −0.71625500129336808105226755652, 0.807907840663200543866080197924, 3.19860458375980292089925510258, 3.96559385497069029217405224224, 5.44410570193616343547335600019, 6.89982047970148039536601642756, 7.85207994842585703301719325648, 9.244812795334974186897873831351, 10.58586065810823489836904145531, 11.21859676165463681934112232512, 11.87865383098838771801404466001

Graph of the $Z$-function along the critical line