L(s) = 1 | + 4.84i·2-s + (5.11 + 0.905i)3-s − 15.4·4-s + 17.3·5-s + (−4.38 + 24.7i)6-s − 36.2i·8-s + (25.3 + 9.26i)9-s + 83.8i·10-s + 27.8i·11-s + (−79.1 − 14.0i)12-s − 16.3i·13-s + (88.5 + 15.6i)15-s + 51.6·16-s − 40.8·17-s + (−44.8 + 122. i)18-s + 68.1i·19-s + ⋯ |
L(s) = 1 | + 1.71i·2-s + (0.984 + 0.174i)3-s − 1.93·4-s + 1.54·5-s + (−0.298 + 1.68i)6-s − 1.59i·8-s + (0.939 + 0.343i)9-s + 2.65i·10-s + 0.763i·11-s + (−1.90 − 0.336i)12-s − 0.347i·13-s + (1.52 + 0.269i)15-s + 0.806·16-s − 0.582·17-s + (−0.587 + 1.60i)18-s + 0.823i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.827 - 0.561i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.827 - 0.561i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.763492 + 2.48336i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.763492 + 2.48336i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-5.11 - 0.905i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 4.84iT - 8T^{2} \) |
| 5 | \( 1 - 17.3T + 125T^{2} \) |
| 11 | \( 1 - 27.8iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 16.3iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 40.8T + 4.91e3T^{2} \) |
| 19 | \( 1 - 68.1iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 71.7iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 216. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 157. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 348.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 153.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 427.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 16.8T + 1.03e5T^{2} \) |
| 53 | \( 1 - 192. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 287.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 224. iT - 2.26e5T^{2} \) |
| 67 | \( 1 + 172.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.06e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 1.07e3iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 52.0T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.02e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 668.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.35e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.56628006368513657398771318112, −12.67990740185265604945609688013, −10.28774018880482782554399250513, −9.556019315030234246912840827289, −8.708115272064334107222496976544, −7.66154545431678876606364024736, −6.58466866723482723088147960987, −5.57918157073915354683610812134, −4.34372871553265762996614775497, −2.18196595613853819411670635355,
1.37299977745974904112202751268, 2.38187371162197592438295660833, 3.46654223101668622259960147770, 5.07718103690872557044471667732, 6.78016467006749093464168922607, 8.789111007117632635306274893177, 9.174973613522885168457076654488, 10.18578314406675410786135818299, 10.97382640264943493066861383011, 12.32651606992794350202072896533