Properties

Label 2-147-21.17-c3-0-18
Degree $2$
Conductor $147$
Sign $0.444 + 0.895i$
Analytic cond. $8.67328$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.5 − 2.59i)3-s + (−4 + 6.92i)4-s + (13.5 + 23.3i)9-s + (36 − 20.7i)12-s − 62.3i·13-s + (−31.9 − 55.4i)16-s + (135 − 77.9i)19-s + (62.5 − 108. i)25-s − 140. i·27-s + (−135 − 77.9i)31-s − 216·36-s + (55 + 95.2i)37-s + (−162 + 280. i)39-s + 520·43-s + 332. i·48-s + ⋯
L(s)  = 1  + (−0.866 − 0.499i)3-s + (−0.5 + 0.866i)4-s + (0.5 + 0.866i)9-s + (0.866 − 0.499i)12-s − 1.33i·13-s + (−0.499 − 0.866i)16-s + (1.63 − 0.941i)19-s + (0.5 − 0.866i)25-s − 1.00i·27-s + (−0.782 − 0.451i)31-s − 36-s + (0.244 + 0.423i)37-s + (−0.665 + 1.15i)39-s + 1.84·43-s + 0.999i·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.444 + 0.895i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $0.444 + 0.895i$
Analytic conductor: \(8.67328\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (80, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :3/2),\ 0.444 + 0.895i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.775719 - 0.481258i\)
\(L(\frac12)\) \(\approx\) \(0.775719 - 0.481258i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (4.5 + 2.59i)T \)
7 \( 1 \)
good2 \( 1 + (4 - 6.92i)T^{2} \)
5 \( 1 + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 62.3iT - 2.19e3T^{2} \)
17 \( 1 + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-135 + 77.9i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 2.43e4T^{2} \)
31 \( 1 + (135 + 77.9i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-55 - 95.2i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 6.89e4T^{2} \)
43 \( 1 - 520T + 7.95e4T^{2} \)
47 \( 1 + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (810 - 467. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (-440 + 762. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 3.57e5T^{2} \)
73 \( 1 + (324 + 187. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (442 + 765. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 5.71e5T^{2} \)
89 \( 1 + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 1.37e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46510193891465516402282067257, −11.59891360461091762294151678547, −10.54790947751493021873182081754, −9.274441078007337872686550887648, −7.934377079934207405420513607946, −7.23527516182156214867234965693, −5.73414961016909173115037478452, −4.64221855032999634865341569835, −2.94844048321400508670640805001, −0.59114164568288093396210999289, 1.27087257537561382827861373003, 3.91029483423987447085577614417, 5.08864969674775856924329194285, 5.97264956388113791407930017405, 7.20485465144881848729034944209, 9.098921141686755449508402713263, 9.669719160580259528917779851105, 10.76051627745620709451713289877, 11.56650731253101578977590132992, 12.63873196349979223192622094904

Graph of the $Z$-function along the critical line