Properties

Label 2-147-147.101-c3-0-28
Degree $2$
Conductor $147$
Sign $-0.948 + 0.316i$
Analytic cond. $8.67328$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.56 − 0.612i)2-s + (−4.21 + 3.03i)3-s + (−3.80 − 3.52i)4-s + (5.95 + 4.05i)5-s + (8.44 − 2.15i)6-s + (8.80 + 16.2i)7-s + (9.59 + 19.9i)8-s + (8.57 − 25.6i)9-s + (−6.80 − 9.98i)10-s + (−3.97 − 26.3i)11-s + (26.7 + 3.33i)12-s + (−18.0 + 14.3i)13-s + (−3.76 − 30.8i)14-s + (−37.4 + 0.954i)15-s + (0.332 + 4.44i)16-s + (−23.7 − 7.31i)17-s + ⋯
L(s)  = 1  + (−0.551 − 0.216i)2-s + (−0.811 + 0.584i)3-s + (−0.475 − 0.441i)4-s + (0.532 + 0.363i)5-s + (0.574 − 0.146i)6-s + (0.475 + 0.879i)7-s + (0.423 + 0.880i)8-s + (0.317 − 0.948i)9-s + (−0.215 − 0.315i)10-s + (−0.109 − 0.723i)11-s + (0.643 + 0.0803i)12-s + (−0.384 + 0.306i)13-s + (−0.0719 − 0.588i)14-s + (−0.644 + 0.0164i)15-s + (0.00519 + 0.0693i)16-s + (−0.338 − 0.104i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 + 0.316i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-0.948 + 0.316i$
Analytic conductor: \(8.67328\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :3/2),\ -0.948 + 0.316i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.00266005 - 0.0163622i\)
\(L(\frac12)\) \(\approx\) \(0.00266005 - 0.0163622i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (4.21 - 3.03i)T \)
7 \( 1 + (-8.80 - 16.2i)T \)
good2 \( 1 + (1.56 + 0.612i)T + (5.86 + 5.44i)T^{2} \)
5 \( 1 + (-5.95 - 4.05i)T + (45.6 + 116. i)T^{2} \)
11 \( 1 + (3.97 + 26.3i)T + (-1.27e3 + 392. i)T^{2} \)
13 \( 1 + (18.0 - 14.3i)T + (488. - 2.14e3i)T^{2} \)
17 \( 1 + (23.7 + 7.31i)T + (4.05e3 + 2.76e3i)T^{2} \)
19 \( 1 + (113. - 65.2i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (41.5 + 134. i)T + (-1.00e4 + 6.85e3i)T^{2} \)
29 \( 1 + (28.6 - 6.53i)T + (2.19e4 - 1.05e4i)T^{2} \)
31 \( 1 + (234. + 135. i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (43.1 - 40.0i)T + (3.78e3 - 5.05e4i)T^{2} \)
41 \( 1 + (-6.52 + 3.14i)T + (4.29e4 - 5.38e4i)T^{2} \)
43 \( 1 + (89.1 + 42.9i)T + (4.95e4 + 6.21e4i)T^{2} \)
47 \( 1 + (141. - 359. i)T + (-7.61e4 - 7.06e4i)T^{2} \)
53 \( 1 + (-485. + 523. i)T + (-1.11e4 - 1.48e5i)T^{2} \)
59 \( 1 + (-178. + 121. i)T + (7.50e4 - 1.91e5i)T^{2} \)
61 \( 1 + (133. + 144. i)T + (-1.69e4 + 2.26e5i)T^{2} \)
67 \( 1 + (111. - 193. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + (909. + 207. i)T + (3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (344. - 135. i)T + (2.85e5 - 2.64e5i)T^{2} \)
79 \( 1 + (-18.5 - 32.0i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (-49.7 + 62.4i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (-418. - 63.1i)T + (6.73e5 + 2.07e5i)T^{2} \)
97 \( 1 + 1.80e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.81647317264377733774436345408, −10.86740319098280276686625747184, −10.20706971641093287815399317952, −9.188114914694732583126332175091, −8.331423960990245106397440038388, −6.32142938880194875395778306762, −5.54746588087158917788475768564, −4.35579945881414353751210790734, −2.07665845621962010827249957856, −0.01076953193686220196774772974, 1.63636253520696459364773126671, 4.24938522065124772149698832066, 5.33298903622330831686740526140, 6.96771069005258107425580791981, 7.58747836656521533138471056279, 8.827177978306612580650907820782, 10.00639894670618479838208306898, 10.88195776281858811954413849721, 12.16701934054119740217274346985, 13.16478399874703146320083098919

Graph of the $Z$-function along the critical line