Properties

Label 2-147-147.101-c3-0-26
Degree $2$
Conductor $147$
Sign $-0.770 + 0.637i$
Analytic cond. $8.67328$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.68 − 1.83i)2-s + (3.18 − 4.10i)3-s + (12.6 + 11.7i)4-s + (5.25 + 3.58i)5-s + (−22.4 + 13.3i)6-s + (−15.9 + 9.47i)7-s + (−20.3 − 42.1i)8-s + (−6.71 − 26.1i)9-s + (−18.0 − 26.4i)10-s + (1.90 + 12.6i)11-s + (88.7 − 14.5i)12-s + (52.6 − 41.9i)13-s + (91.9 − 15.0i)14-s + (31.4 − 10.1i)15-s + (7.24 + 96.6i)16-s + (−94.3 − 29.1i)17-s + ⋯
L(s)  = 1  + (−1.65 − 0.649i)2-s + (0.612 − 0.790i)3-s + (1.58 + 1.47i)4-s + (0.470 + 0.320i)5-s + (−1.52 + 0.909i)6-s + (−0.859 + 0.511i)7-s + (−0.897 − 1.86i)8-s + (−0.248 − 0.968i)9-s + (−0.570 − 0.836i)10-s + (0.0523 + 0.347i)11-s + (2.13 − 0.351i)12-s + (1.12 − 0.895i)13-s + (1.75 − 0.288i)14-s + (0.541 − 0.175i)15-s + (0.113 + 1.51i)16-s + (−1.34 − 0.415i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.770 + 0.637i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.770 + 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-0.770 + 0.637i$
Analytic conductor: \(8.67328\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{147} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :3/2),\ -0.770 + 0.637i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.256133 - 0.710901i\)
\(L(\frac12)\) \(\approx\) \(0.256133 - 0.710901i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-3.18 + 4.10i)T \)
7 \( 1 + (15.9 - 9.47i)T \)
good2 \( 1 + (4.68 + 1.83i)T + (5.86 + 5.44i)T^{2} \)
5 \( 1 + (-5.25 - 3.58i)T + (45.6 + 116. i)T^{2} \)
11 \( 1 + (-1.90 - 12.6i)T + (-1.27e3 + 392. i)T^{2} \)
13 \( 1 + (-52.6 + 41.9i)T + (488. - 2.14e3i)T^{2} \)
17 \( 1 + (94.3 + 29.1i)T + (4.05e3 + 2.76e3i)T^{2} \)
19 \( 1 + (-126. + 73.0i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (34.7 + 112. i)T + (-1.00e4 + 6.85e3i)T^{2} \)
29 \( 1 + (-119. + 27.3i)T + (2.19e4 - 1.05e4i)T^{2} \)
31 \( 1 + (142. + 82.4i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (125. - 116. i)T + (3.78e3 - 5.05e4i)T^{2} \)
41 \( 1 + (-251. + 120. i)T + (4.29e4 - 5.38e4i)T^{2} \)
43 \( 1 + (156. + 75.4i)T + (4.95e4 + 6.21e4i)T^{2} \)
47 \( 1 + (70.9 - 180. i)T + (-7.61e4 - 7.06e4i)T^{2} \)
53 \( 1 + (192. - 207. i)T + (-1.11e4 - 1.48e5i)T^{2} \)
59 \( 1 + (-361. + 246. i)T + (7.50e4 - 1.91e5i)T^{2} \)
61 \( 1 + (183. + 198. i)T + (-1.69e4 + 2.26e5i)T^{2} \)
67 \( 1 + (272. - 471. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + (-60.6 - 13.8i)T + (3.22e5 + 1.55e5i)T^{2} \)
73 \( 1 + (-731. + 287. i)T + (2.85e5 - 2.64e5i)T^{2} \)
79 \( 1 + (-62.0 - 107. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (-424. + 532. i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (303. + 45.7i)T + (6.73e5 + 2.07e5i)T^{2} \)
97 \( 1 + 1.26e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.02731061691131637155656411278, −10.98532986289678746967059769524, −9.862228365601749987331021239138, −9.107255424343248709840172714856, −8.325124987149809656458013375876, −7.12664596124369917108221269077, −6.25081665821317125558071003872, −3.12255061651060812610338475819, −2.24782598943644347395036799019, −0.59299789576564783999953033960, 1.57451043048444004524489249595, 3.66225101587616045012961880399, 5.69672878762359527723136701113, 6.84043090512170034229092100789, 8.046711924309378906735484540386, 9.114025115701055007276307988177, 9.472330302963956001809568613067, 10.47925477725324666343479670416, 11.33523975880544300035179089380, 13.36252258077981700688356579346

Graph of the $Z$-function along the critical line