Properties

Label 2-147-1.1-c7-0-36
Degree $2$
Conductor $147$
Sign $-1$
Analytic cond. $45.9205$
Root an. cond. $6.77647$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16.0·2-s + 27·3-s + 128.·4-s + 211.·5-s − 432.·6-s − 7.07·8-s + 729·9-s − 3.38e3·10-s − 954.·11-s + 3.46e3·12-s + 1.30e3·13-s + 5.70e3·15-s − 1.63e4·16-s − 3.03e4·17-s − 1.16e4·18-s + 9.69e3·19-s + 2.71e4·20-s + 1.52e4·22-s − 8.86e4·23-s − 191.·24-s − 3.34e4·25-s − 2.09e4·26-s + 1.96e4·27-s + 9.71e4·29-s − 9.13e4·30-s + 1.36e5·31-s + 2.62e5·32-s + ⋯
L(s)  = 1  − 1.41·2-s + 0.577·3-s + 1.00·4-s + 0.756·5-s − 0.817·6-s − 0.00488·8-s + 0.333·9-s − 1.07·10-s − 0.216·11-s + 0.579·12-s + 0.165·13-s + 0.436·15-s − 0.996·16-s − 1.49·17-s − 0.471·18-s + 0.324·19-s + 0.758·20-s + 0.306·22-s − 1.51·23-s − 0.00282·24-s − 0.428·25-s − 0.233·26-s + 0.192·27-s + 0.739·29-s − 0.617·30-s + 0.820·31-s + 1.41·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(45.9205\)
Root analytic conductor: \(6.77647\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 147,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
7 \( 1 \)
good2 \( 1 + 16.0T + 128T^{2} \)
5 \( 1 - 211.T + 7.81e4T^{2} \)
11 \( 1 + 954.T + 1.94e7T^{2} \)
13 \( 1 - 1.30e3T + 6.27e7T^{2} \)
17 \( 1 + 3.03e4T + 4.10e8T^{2} \)
19 \( 1 - 9.69e3T + 8.93e8T^{2} \)
23 \( 1 + 8.86e4T + 3.40e9T^{2} \)
29 \( 1 - 9.71e4T + 1.72e10T^{2} \)
31 \( 1 - 1.36e5T + 2.75e10T^{2} \)
37 \( 1 + 4.48e5T + 9.49e10T^{2} \)
41 \( 1 - 5.97e5T + 1.94e11T^{2} \)
43 \( 1 + 4.91e5T + 2.71e11T^{2} \)
47 \( 1 - 8.69e5T + 5.06e11T^{2} \)
53 \( 1 - 1.23e6T + 1.17e12T^{2} \)
59 \( 1 + 2.08e6T + 2.48e12T^{2} \)
61 \( 1 + 2.43e6T + 3.14e12T^{2} \)
67 \( 1 + 3.42e6T + 6.06e12T^{2} \)
71 \( 1 - 3.80e5T + 9.09e12T^{2} \)
73 \( 1 + 3.81e6T + 1.10e13T^{2} \)
79 \( 1 - 8.94e5T + 1.92e13T^{2} \)
83 \( 1 + 4.40e6T + 2.71e13T^{2} \)
89 \( 1 + 8.15e6T + 4.42e13T^{2} \)
97 \( 1 - 3.80e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69616803117664377812804893609, −10.00063185928293416759461557115, −9.099320106872103845267485591117, −8.364192346475987549672672974279, −7.30032175236316333265622404811, −6.12443361380815810382015305652, −4.38107566889524032456741847490, −2.49292197254431025626536931959, −1.54160882605527365066264957284, 0, 1.54160882605527365066264957284, 2.49292197254431025626536931959, 4.38107566889524032456741847490, 6.12443361380815810382015305652, 7.30032175236316333265622404811, 8.364192346475987549672672974279, 9.099320106872103845267485591117, 10.00063185928293416759461557115, 10.69616803117664377812804893609

Graph of the $Z$-function along the critical line