Properties

Label 2-147-1.1-c7-0-34
Degree $2$
Conductor $147$
Sign $-1$
Analytic cond. $45.9205$
Root an. cond. $6.77647$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.80·2-s − 27·3-s − 81.7·4-s − 12.5·5-s − 183.·6-s − 1.42e3·8-s + 729·9-s − 85.4·10-s + 6.71e3·11-s + 2.20e3·12-s + 8.77e3·13-s + 339.·15-s + 757.·16-s + 1.39e4·17-s + 4.95e3·18-s − 3.43e4·19-s + 1.02e3·20-s + 4.57e4·22-s − 8.45e4·23-s + 3.85e4·24-s − 7.79e4·25-s + 5.96e4·26-s − 1.96e4·27-s − 1.09e5·29-s + 2.30e3·30-s + 1.54e5·31-s + 1.87e5·32-s + ⋯
L(s)  = 1  + 0.601·2-s − 0.577·3-s − 0.638·4-s − 0.0449·5-s − 0.347·6-s − 0.985·8-s + 0.333·9-s − 0.0270·10-s + 1.52·11-s + 0.368·12-s + 1.10·13-s + 0.0259·15-s + 0.0462·16-s + 0.687·17-s + 0.200·18-s − 1.15·19-s + 0.0286·20-s + 0.915·22-s − 1.44·23-s + 0.568·24-s − 0.997·25-s + 0.665·26-s − 0.192·27-s − 0.834·29-s + 0.0155·30-s + 0.929·31-s + 1.01·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(45.9205\)
Root analytic conductor: \(6.77647\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 147,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
7 \( 1 \)
good2 \( 1 - 6.80T + 128T^{2} \)
5 \( 1 + 12.5T + 7.81e4T^{2} \)
11 \( 1 - 6.71e3T + 1.94e7T^{2} \)
13 \( 1 - 8.77e3T + 6.27e7T^{2} \)
17 \( 1 - 1.39e4T + 4.10e8T^{2} \)
19 \( 1 + 3.43e4T + 8.93e8T^{2} \)
23 \( 1 + 8.45e4T + 3.40e9T^{2} \)
29 \( 1 + 1.09e5T + 1.72e10T^{2} \)
31 \( 1 - 1.54e5T + 2.75e10T^{2} \)
37 \( 1 + 1.53e5T + 9.49e10T^{2} \)
41 \( 1 - 1.61e5T + 1.94e11T^{2} \)
43 \( 1 + 6.33e5T + 2.71e11T^{2} \)
47 \( 1 - 1.56e5T + 5.06e11T^{2} \)
53 \( 1 + 1.07e6T + 1.17e12T^{2} \)
59 \( 1 - 1.11e6T + 2.48e12T^{2} \)
61 \( 1 + 2.24e6T + 3.14e12T^{2} \)
67 \( 1 - 7.34e5T + 6.06e12T^{2} \)
71 \( 1 + 1.20e6T + 9.09e12T^{2} \)
73 \( 1 + 6.18e6T + 1.10e13T^{2} \)
79 \( 1 + 4.90e6T + 1.92e13T^{2} \)
83 \( 1 - 7.43e6T + 2.71e13T^{2} \)
89 \( 1 + 1.18e6T + 4.42e13T^{2} \)
97 \( 1 - 3.93e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57448280044134151035111557849, −10.21606272940204531748726937586, −9.180949587715109989389650779109, −8.150387360604694349537400240631, −6.42427131722655802700267238134, −5.80774480393711159763337863206, −4.32197255365183077130950888078, −3.65223349184123726770275784531, −1.47830218810590571245649195413, 0, 1.47830218810590571245649195413, 3.65223349184123726770275784531, 4.32197255365183077130950888078, 5.80774480393711159763337863206, 6.42427131722655802700267238134, 8.150387360604694349537400240631, 9.180949587715109989389650779109, 10.21606272940204531748726937586, 11.57448280044134151035111557849

Graph of the $Z$-function along the critical line