Properties

Label 2-147-1.1-c7-0-16
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $45.9205$
Root an. cond. $6.77647$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.29·2-s + 27·3-s − 109.·4-s + 241.·5-s + 115.·6-s − 1.02e3·8-s + 729·9-s + 1.03e3·10-s − 6.84e3·11-s − 2.95e3·12-s + 1.03e4·13-s + 6.50e3·15-s + 9.63e3·16-s + 9.43e3·17-s + 3.13e3·18-s + 4.99e4·19-s − 2.64e4·20-s − 2.94e4·22-s − 6.37e4·23-s − 2.75e4·24-s − 2.00e4·25-s + 4.43e4·26-s + 1.96e4·27-s + 1.80e5·29-s + 2.79e4·30-s + 2.79e3·31-s + 1.72e5·32-s + ⋯
L(s)  = 1  + 0.379·2-s + 0.577·3-s − 0.855·4-s + 0.862·5-s + 0.219·6-s − 0.704·8-s + 0.333·9-s + 0.327·10-s − 1.55·11-s − 0.494·12-s + 1.30·13-s + 0.497·15-s + 0.588·16-s + 0.465·17-s + 0.126·18-s + 1.67·19-s − 0.738·20-s − 0.588·22-s − 1.09·23-s − 0.406·24-s − 0.256·25-s + 0.494·26-s + 0.192·27-s + 1.37·29-s + 0.189·30-s + 0.0168·31-s + 0.928·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(45.9205\)
Root analytic conductor: \(6.77647\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.913252686\)
\(L(\frac12)\) \(\approx\) \(2.913252686\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
7 \( 1 \)
good2 \( 1 - 4.29T + 128T^{2} \)
5 \( 1 - 241.T + 7.81e4T^{2} \)
11 \( 1 + 6.84e3T + 1.94e7T^{2} \)
13 \( 1 - 1.03e4T + 6.27e7T^{2} \)
17 \( 1 - 9.43e3T + 4.10e8T^{2} \)
19 \( 1 - 4.99e4T + 8.93e8T^{2} \)
23 \( 1 + 6.37e4T + 3.40e9T^{2} \)
29 \( 1 - 1.80e5T + 1.72e10T^{2} \)
31 \( 1 - 2.79e3T + 2.75e10T^{2} \)
37 \( 1 - 2.07e5T + 9.49e10T^{2} \)
41 \( 1 + 2.77e5T + 1.94e11T^{2} \)
43 \( 1 - 2.64e5T + 2.71e11T^{2} \)
47 \( 1 - 9.30e5T + 5.06e11T^{2} \)
53 \( 1 - 1.20e6T + 1.17e12T^{2} \)
59 \( 1 - 1.12e6T + 2.48e12T^{2} \)
61 \( 1 - 1.73e6T + 3.14e12T^{2} \)
67 \( 1 - 5.07e5T + 6.06e12T^{2} \)
71 \( 1 + 4.30e6T + 9.09e12T^{2} \)
73 \( 1 - 3.25e6T + 1.10e13T^{2} \)
79 \( 1 - 4.93e6T + 1.92e13T^{2} \)
83 \( 1 + 2.92e6T + 2.71e13T^{2} \)
89 \( 1 - 4.76e6T + 4.42e13T^{2} \)
97 \( 1 - 7.66e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.98554890810424598072910458015, −10.36564479815906786799547142745, −9.731269969468021168630565014813, −8.611749361949392816676521366668, −7.74887741973930669434339009216, −5.96433996724516851987845910648, −5.19500352343598803466112498112, −3.75020234498035832808852409802, −2.59272904912573961875450659774, −0.937757293998018991731365237905, 0.937757293998018991731365237905, 2.59272904912573961875450659774, 3.75020234498035832808852409802, 5.19500352343598803466112498112, 5.96433996724516851987845910648, 7.74887741973930669434339009216, 8.611749361949392816676521366668, 9.731269969468021168630565014813, 10.36564479815906786799547142745, 11.98554890810424598072910458015

Graph of the $Z$-function along the critical line