Properties

Label 2-147-1.1-c3-0-1
Degree $2$
Conductor $147$
Sign $1$
Analytic cond. $8.67328$
Root an. cond. $2.94504$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.248·2-s − 3·3-s − 7.93·4-s − 12.4·5-s − 0.744·6-s − 3.95·8-s + 9·9-s − 3.08·10-s + 60.3·11-s + 23.8·12-s + 36.4·13-s + 37.3·15-s + 62.5·16-s − 48.7·17-s + 2.23·18-s − 50.5·19-s + 98.7·20-s + 14.9·22-s + 138.·23-s + 11.8·24-s + 29.6·25-s + 9.03·26-s − 27·27-s − 61.1·29-s + 9.25·30-s − 1.16·31-s + 47.1·32-s + ⋯
L(s)  = 1  + 0.0877·2-s − 0.577·3-s − 0.992·4-s − 1.11·5-s − 0.0506·6-s − 0.174·8-s + 0.333·9-s − 0.0975·10-s + 1.65·11-s + 0.572·12-s + 0.777·13-s + 0.642·15-s + 0.976·16-s − 0.695·17-s + 0.0292·18-s − 0.610·19-s + 1.10·20-s + 0.144·22-s + 1.25·23-s + 0.100·24-s + 0.236·25-s + 0.0681·26-s − 0.192·27-s − 0.391·29-s + 0.0563·30-s − 0.00677·31-s + 0.260·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(8.67328\)
Root analytic conductor: \(2.94504\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 147,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9119739018\)
\(L(\frac12)\) \(\approx\) \(0.9119739018\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
7 \( 1 \)
good2 \( 1 - 0.248T + 8T^{2} \)
5 \( 1 + 12.4T + 125T^{2} \)
11 \( 1 - 60.3T + 1.33e3T^{2} \)
13 \( 1 - 36.4T + 2.19e3T^{2} \)
17 \( 1 + 48.7T + 4.91e3T^{2} \)
19 \( 1 + 50.5T + 6.85e3T^{2} \)
23 \( 1 - 138.T + 1.21e4T^{2} \)
29 \( 1 + 61.1T + 2.43e4T^{2} \)
31 \( 1 + 1.16T + 2.97e4T^{2} \)
37 \( 1 - 69.5T + 5.06e4T^{2} \)
41 \( 1 - 308.T + 6.89e4T^{2} \)
43 \( 1 - 174.T + 7.95e4T^{2} \)
47 \( 1 - 389.T + 1.03e5T^{2} \)
53 \( 1 - 314.T + 1.48e5T^{2} \)
59 \( 1 - 844.T + 2.05e5T^{2} \)
61 \( 1 + 338.T + 2.26e5T^{2} \)
67 \( 1 + 971.T + 3.00e5T^{2} \)
71 \( 1 + 98.4T + 3.57e5T^{2} \)
73 \( 1 - 710.T + 3.89e5T^{2} \)
79 \( 1 + 486.T + 4.93e5T^{2} \)
83 \( 1 - 605.T + 5.71e5T^{2} \)
89 \( 1 - 218.T + 7.04e5T^{2} \)
97 \( 1 + 782.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51348529779422459585959971924, −11.61241142810012786116654669595, −10.81064594166399962105859860683, −9.273612063703971131222942790737, −8.596926275864234421458427459234, −7.21307866961338638517013981050, −5.98931998460235655427104357386, −4.43213723382715478558351535525, −3.79393981102392500223210340747, −0.826718000218604297585452833040, 0.826718000218604297585452833040, 3.79393981102392500223210340747, 4.43213723382715478558351535525, 5.98931998460235655427104357386, 7.21307866961338638517013981050, 8.596926275864234421458427459234, 9.273612063703971131222942790737, 10.81064594166399962105859860683, 11.61241142810012786116654669595, 12.51348529779422459585959971924

Graph of the $Z$-function along the critical line