Properties

Label 2-147-1.1-c13-0-68
Degree $2$
Conductor $147$
Sign $-1$
Analytic cond. $157.629$
Root an. cond. $12.5550$
Motivic weight $13$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·2-s + 729·3-s − 8.04e3·4-s + 3.02e4·5-s − 8.74e3·6-s + 1.94e5·8-s + 5.31e5·9-s − 3.62e5·10-s − 1.11e7·11-s − 5.86e6·12-s − 8.04e6·13-s + 2.20e7·15-s + 6.35e7·16-s + 1.17e8·17-s − 6.37e6·18-s + 2.14e8·19-s − 2.43e8·20-s + 1.34e8·22-s + 8.30e8·23-s + 1.42e8·24-s − 3.08e8·25-s + 9.65e7·26-s + 3.87e8·27-s − 1.25e9·29-s − 2.64e8·30-s − 6.15e9·31-s − 2.35e9·32-s + ⋯
L(s)  = 1  − 0.132·2-s + 0.577·3-s − 0.982·4-s + 0.864·5-s − 0.0765·6-s + 0.262·8-s + 1/3·9-s − 0.114·10-s − 1.90·11-s − 0.567·12-s − 0.462·13-s + 0.499·15-s + 0.947·16-s + 1.18·17-s − 0.0441·18-s + 1.04·19-s − 0.849·20-s + 0.252·22-s + 1.16·23-s + 0.151·24-s − 0.252·25-s + 0.0613·26-s + 0.192·27-s − 0.390·29-s − 0.0661·30-s − 1.24·31-s − 0.388·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 147 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(147\)    =    \(3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(157.629\)
Root analytic conductor: \(12.5550\)
Motivic weight: \(13\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 147,\ (\ :13/2),\ -1)\)

Particular Values

\(L(7)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{15}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p^{6} T \)
7 \( 1 \)
good2 \( 1 + 3 p^{2} T + p^{13} T^{2} \)
5 \( 1 - 6042 p T + p^{13} T^{2} \)
11 \( 1 + 1016628 p T + p^{13} T^{2} \)
13 \( 1 + 8049614 T + p^{13} T^{2} \)
17 \( 1 - 117494622 T + p^{13} T^{2} \)
19 \( 1 - 214061380 T + p^{13} T^{2} \)
23 \( 1 - 830555544 T + p^{13} T^{2} \)
29 \( 1 + 1252400250 T + p^{13} T^{2} \)
31 \( 1 + 6159350552 T + p^{13} T^{2} \)
37 \( 1 + 5498191402 T + p^{13} T^{2} \)
41 \( 1 - 4678687878 T + p^{13} T^{2} \)
43 \( 1 - 7115013764 T + p^{13} T^{2} \)
47 \( 1 - 29528776992 T + p^{13} T^{2} \)
53 \( 1 + 204125042466 T + p^{13} T^{2} \)
59 \( 1 - 29909821020 T + p^{13} T^{2} \)
61 \( 1 - 134392006738 T + p^{13} T^{2} \)
67 \( 1 - 348518801948 T + p^{13} T^{2} \)
71 \( 1 - 1314335409192 T + p^{13} T^{2} \)
73 \( 1 - 1178875922326 T + p^{13} T^{2} \)
79 \( 1 + 1072420659640 T + p^{13} T^{2} \)
83 \( 1 + 1124025139644 T + p^{13} T^{2} \)
89 \( 1 + 2235610909530 T + p^{13} T^{2} \)
97 \( 1 - 14215257165502 T + p^{13} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.851256145423773897832784781767, −9.332622411412629856449169313743, −8.085153318929826622919342353080, −7.40326775911921661958969446105, −5.48529075703430835532918062811, −5.11345660912642506325495396853, −3.50085519014549692638665796735, −2.52212222169236527501668380551, −1.24255732313152130737196734183, 0, 1.24255732313152130737196734183, 2.52212222169236527501668380551, 3.50085519014549692638665796735, 5.11345660912642506325495396853, 5.48529075703430835532918062811, 7.40326775911921661958969446105, 8.085153318929826622919342353080, 9.332622411412629856449169313743, 9.851256145423773897832784781767

Graph of the $Z$-function along the critical line