L(s) = 1 | + (1.11 − 1.93i)3-s + (1.11 + 1.93i)5-s + (2 − 1.73i)7-s + (−1 − 1.73i)9-s + (−1.5 + 2.59i)11-s − 13-s + 5.00·15-s + (3.73 − 6.47i)17-s + (1.5 + 2.59i)19-s + (−1.11 − 5.80i)21-s + (−1.88 − 3.25i)23-s + 2.23·27-s − 4.47·29-s + (2.5 − 4.33i)31-s + (3.35 + 5.80i)33-s + ⋯ |
L(s) = 1 | + (0.645 − 1.11i)3-s + (0.499 + 0.866i)5-s + (0.755 − 0.654i)7-s + (−0.333 − 0.577i)9-s + (−0.452 + 0.783i)11-s − 0.277·13-s + 1.29·15-s + (0.906 − 1.56i)17-s + (0.344 + 0.596i)19-s + (−0.243 − 1.26i)21-s + (−0.392 − 0.679i)23-s + 0.430·27-s − 0.830·29-s + (0.449 − 0.777i)31-s + (0.583 + 1.01i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.538998743\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.538998743\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 + (-1.11 + 1.93i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.11 - 1.93i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.73 + 6.47i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.5 - 2.59i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.88 + 3.25i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4.47T + 29T^{2} \) |
| 31 | \( 1 + (-2.5 + 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.35 - 7.54i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 4.47T + 41T^{2} \) |
| 43 | \( 1 - 8T + 43T^{2} \) |
| 47 | \( 1 + (-0.736 - 1.27i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.736 - 1.27i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.73 + 6.47i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.5 - 2.59i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.94T + 71T^{2} \) |
| 73 | \( 1 + (5.35 - 9.27i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.35 - 9.27i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-1.11 - 1.93i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 17.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.564222070422563519301169369152, −8.241519480061036594486697281862, −7.59278680409530293448056594533, −7.26892796926927244876551351508, −6.40050956864377328904812130976, −5.30308062608915446196897066752, −4.28260959373508114776295645087, −2.83814372702961403383215518368, −2.29478276037662563121514322592, −1.10725356519076593075455531569,
1.38130982358383683771444019109, 2.64838452845639695590210996746, 3.69926878954685653487473631342, 4.57082295022008393980249525195, 5.48383092411319898480191329049, 5.87209179820867116533439991561, 7.59397953468103056663730610355, 8.264332197645826148036507641986, 9.064856202699270087965394092742, 9.311457896694164501359503092680