| L(s) = 1 | + (−1.30 + 2.26i)3-s + 2.61·5-s + (0.5 + 0.866i)7-s + (−1.92 − 3.33i)9-s + (0.927 − 1.60i)11-s + (−2.5 + 2.59i)13-s + (−3.42 + 5.93i)15-s + (0.736 + 1.27i)17-s + (−0.927 − 1.60i)19-s − 2.61·21-s + (−2.23 + 3.87i)23-s + 1.85·25-s + 2.23·27-s + (−3.54 + 6.14i)29-s + 4.70·31-s + ⋯ |
| L(s) = 1 | + (−0.755 + 1.30i)3-s + 1.17·5-s + (0.188 + 0.327i)7-s + (−0.642 − 1.11i)9-s + (0.279 − 0.484i)11-s + (−0.693 + 0.720i)13-s + (−0.884 + 1.53i)15-s + (0.178 + 0.309i)17-s + (−0.212 − 0.368i)19-s − 0.571·21-s + (−0.466 + 0.807i)23-s + 0.370·25-s + 0.430·27-s + (−0.658 + 1.14i)29-s + 0.845·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1456 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.872 - 0.488i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.263985584\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.263985584\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (2.5 - 2.59i)T \) |
| good | 3 | \( 1 + (1.30 - 2.26i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 2.61T + 5T^{2} \) |
| 11 | \( 1 + (-0.927 + 1.60i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.736 - 1.27i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.927 + 1.60i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.23 - 3.87i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.54 - 6.14i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4.70T + 31T^{2} \) |
| 37 | \( 1 + (2 - 3.46i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.381 - 0.661i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.28 - 10.8i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.23T + 47T^{2} \) |
| 53 | \( 1 - 3.76T + 53T^{2} \) |
| 59 | \( 1 + (1.11 + 1.93i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 - 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.35 - 11.0i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.09 + 12.2i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 6.70T + 83T^{2} \) |
| 89 | \( 1 + (2.45 - 4.25i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (9.42 + 16.3i)T + (-48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.859425377401160728046550534586, −9.318275086621025668350574507435, −8.634197935783170691679017579432, −7.30088849876870980559424733201, −6.17312679735306930656083857962, −5.71860605490438164010844193840, −4.90541504820762970113688005184, −4.14715661628870675886569742713, −2.92693113168608544465786712280, −1.62271613302544210424979023036,
0.54377516870769913214941928173, 1.79674521092784992695523399081, 2.49150510071916518720464521296, 4.21317027481963991441209650743, 5.42490829108155258210438819864, 5.88355651269250119452238942075, 6.72899878726561293060031101010, 7.39906002744065998852559987352, 8.124627866772543671562592603399, 9.280981320319036414466507034991