Properties

Label 2-1450-5.4-c1-0-16
Degree $2$
Conductor $1450$
Sign $-0.447 - 0.894i$
Analytic cond. $11.5783$
Root an. cond. $3.40269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 0.470i·3-s − 4-s − 0.470·6-s + 3.30i·7-s i·8-s + 2.77·9-s + 4.71·11-s − 0.470i·12-s + 2.24i·13-s − 3.30·14-s + 16-s − 0.719i·17-s + 2.77i·18-s + 0.470·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.271i·3-s − 0.5·4-s − 0.192·6-s + 1.25i·7-s − 0.353i·8-s + 0.926·9-s + 1.42·11-s − 0.135i·12-s + 0.623i·13-s − 0.884·14-s + 0.250·16-s − 0.174i·17-s + 0.654i·18-s + 0.107·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1450\)    =    \(2 \cdot 5^{2} \cdot 29\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(11.5783\)
Root analytic conductor: \(3.40269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1450} (349, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1450,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.857391063\)
\(L(\frac12)\) \(\approx\) \(1.857391063\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
29 \( 1 + T \)
good3 \( 1 - 0.470iT - 3T^{2} \)
7 \( 1 - 3.30iT - 7T^{2} \)
11 \( 1 - 4.71T + 11T^{2} \)
13 \( 1 - 2.24iT - 13T^{2} \)
17 \( 1 + 0.719iT - 17T^{2} \)
19 \( 1 - 0.470T + 19T^{2} \)
23 \( 1 + 5.80iT - 23T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 + 1.02iT - 37T^{2} \)
41 \( 1 + 0.0275T + 41T^{2} \)
43 \( 1 - 6.61iT - 43T^{2} \)
47 \( 1 + 4.33iT - 47T^{2} \)
53 \( 1 - 10.7iT - 53T^{2} \)
59 \( 1 + 11.0T + 59T^{2} \)
61 \( 1 - 1.35T + 61T^{2} \)
67 \( 1 - 8.80iT - 67T^{2} \)
71 \( 1 + 5.80T + 71T^{2} \)
73 \( 1 - 3.64iT - 73T^{2} \)
79 \( 1 + 16.6T + 79T^{2} \)
83 \( 1 + 5.21iT - 83T^{2} \)
89 \( 1 + 9.08T + 89T^{2} \)
97 \( 1 - 11.1iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.525209690490941585628960012109, −8.969114488423919043545351100765, −8.334087351930139724945395491740, −7.18905186590075328513343598623, −6.49046431242130203962152469515, −5.86100379111253045066972607068, −4.64247614638952412323079602108, −4.18465263110509622299301245166, −2.79542467900995834716840911017, −1.39737108339364922699609699868, 0.899860982485450110058481782859, 1.66503505717602899396904290183, 3.27432813408693497642219305645, 4.02042723822584557214702077800, 4.71947617032199971105949779778, 6.06225247526865146226502419058, 6.95338592867462637030328623385, 7.59524346571613622746048371625, 8.506366788508655311491799616509, 9.593690556796491334870377839441

Graph of the $Z$-function along the critical line