L(s) = 1 | − 0.517i·2-s + 1.41i·3-s + 1.73·4-s + (−1.73 + 1.41i)5-s + 0.732·6-s + 2.44i·7-s − 1.93i·8-s + 0.999·9-s + (0.732 + 0.896i)10-s − 1.26·11-s + 2.44i·12-s − 1.79i·13-s + 1.26·14-s + (−2.00 − 2.44i)15-s + 2.46·16-s − 1.41i·17-s + ⋯ |
L(s) = 1 | − 0.366i·2-s + 0.816i·3-s + 0.866·4-s + (−0.774 + 0.632i)5-s + 0.298·6-s + 0.925i·7-s − 0.683i·8-s + 0.333·9-s + (0.231 + 0.283i)10-s − 0.382·11-s + 0.707i·12-s − 0.497i·13-s + 0.338·14-s + (−0.516 − 0.632i)15-s + 0.616·16-s − 0.342i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.774 - 0.632i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13622 + 0.404942i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13622 + 0.404942i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (1.73 - 1.41i)T \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 0.517iT - 2T^{2} \) |
| 3 | \( 1 - 1.41iT - 3T^{2} \) |
| 7 | \( 1 - 2.44iT - 7T^{2} \) |
| 11 | \( 1 + 1.26T + 11T^{2} \) |
| 13 | \( 1 + 1.79iT - 13T^{2} \) |
| 17 | \( 1 + 1.41iT - 17T^{2} \) |
| 19 | \( 1 - 3.26T + 19T^{2} \) |
| 23 | \( 1 + 6.31iT - 23T^{2} \) |
| 31 | \( 1 + 8.73T + 31T^{2} \) |
| 37 | \( 1 + 9.14iT - 37T^{2} \) |
| 41 | \( 1 + 6.92T + 41T^{2} \) |
| 43 | \( 1 - 9.14iT - 43T^{2} \) |
| 47 | \( 1 + 1.41iT - 47T^{2} \) |
| 53 | \( 1 - 5.93iT - 53T^{2} \) |
| 59 | \( 1 - 10.3T + 59T^{2} \) |
| 61 | \( 1 - 2.92T + 61T^{2} \) |
| 67 | \( 1 + 4.24iT - 67T^{2} \) |
| 71 | \( 1 - 3.46T + 71T^{2} \) |
| 73 | \( 1 + 7.34iT - 73T^{2} \) |
| 79 | \( 1 - 4.19T + 79T^{2} \) |
| 83 | \( 1 - 10.1iT - 83T^{2} \) |
| 89 | \( 1 + 10.3T + 89T^{2} \) |
| 97 | \( 1 - 10.9iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.81621856028846601184235497876, −12.03596842987881920574184625758, −11.03153182554657791916680008698, −10.43730024555736516081831010560, −9.313986587855006499243221296222, −7.86304731546637330483995578264, −6.83101821932488606825056155629, −5.37612111897921377861926169509, −3.76486703457796415461676740519, −2.60687080788259311182186792278,
1.53644139966111061058609187826, 3.72238825533018394683207077486, 5.36307509771792475674337794604, 6.97971833532055140979309042546, 7.38496452882958715316303547604, 8.353525387776565250596118767649, 9.986390453138161154561843514867, 11.24624817926543248005570560477, 11.95756884018807431017053763139, 12.98006343541619476453980083567