| L(s) = 1 | − 2.77i·2-s + 0.269i·3-s − 5.67·4-s + (−1.96 − 1.06i)5-s + 0.747·6-s − 1.86i·7-s + 10.1i·8-s + 2.92·9-s + (−2.96 + 5.43i)10-s − 3.25·11-s − 1.53i·12-s − 3.40i·13-s − 5.17·14-s + (0.288 − 0.529i)15-s + 16.8·16-s − 2.40i·17-s + ⋯ |
| L(s) = 1 | − 1.95i·2-s + 0.155i·3-s − 2.83·4-s + (−0.878 − 0.478i)5-s + 0.305·6-s − 0.706i·7-s + 3.59i·8-s + 0.975·9-s + (−0.937 + 1.72i)10-s − 0.980·11-s − 0.442i·12-s − 0.943i·13-s − 1.38·14-s + (0.0745 − 0.136i)15-s + 4.21·16-s − 0.584i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.878 - 0.478i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.878 - 0.478i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.176681 + 0.693620i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.176681 + 0.693620i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 + (1.96 + 1.06i)T \) |
| 29 | \( 1 - T \) |
| good | 2 | \( 1 + 2.77iT - 2T^{2} \) |
| 3 | \( 1 - 0.269iT - 3T^{2} \) |
| 7 | \( 1 + 1.86iT - 7T^{2} \) |
| 11 | \( 1 + 3.25T + 11T^{2} \) |
| 13 | \( 1 + 3.40iT - 13T^{2} \) |
| 17 | \( 1 + 2.40iT - 17T^{2} \) |
| 19 | \( 1 - 0.674T + 19T^{2} \) |
| 23 | \( 1 + 7.41iT - 23T^{2} \) |
| 31 | \( 1 - 5.25T + 31T^{2} \) |
| 37 | \( 1 - 1.86iT - 37T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 - 3.46iT - 43T^{2} \) |
| 47 | \( 1 - 4.00iT - 47T^{2} \) |
| 53 | \( 1 + 0.877iT - 53T^{2} \) |
| 59 | \( 1 + 10T + 59T^{2} \) |
| 61 | \( 1 - 11.8T + 61T^{2} \) |
| 67 | \( 1 - 7.95iT - 67T^{2} \) |
| 71 | \( 1 - 2T + 71T^{2} \) |
| 73 | \( 1 - 0.607iT - 73T^{2} \) |
| 79 | \( 1 + 8.60T + 79T^{2} \) |
| 83 | \( 1 - 2.40iT - 83T^{2} \) |
| 89 | \( 1 - 8.50T + 89T^{2} \) |
| 97 | \( 1 + 13.1iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57662167923524132921377691636, −11.42851646343676511139893209364, −10.48658769683817806905079163029, −9.967340911458833811408258902947, −8.591927905541423311622636646840, −7.66375450998325171366980439651, −4.95869877159582691024536261954, −4.22057669263594512958222748087, −2.91362387132760813110666347490, −0.77987242225437211767586115719,
3.89565328243853922571192153020, 5.08835621184021306723856791168, 6.36784564754320836179820049315, 7.32850132372482763009875020732, 8.013616752869046414211176127195, 9.110253611982722406612870267419, 10.25090962241174288617134187493, 11.99102528716145205147363537132, 13.04352726521785670563859635791, 13.92301962737694538172537577965