Properties

Label 2-145-1.1-c1-0-0
Degree $2$
Conductor $145$
Sign $1$
Analytic cond. $1.15783$
Root an. cond. $1.07602$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.21·2-s − 2.90·3-s − 0.525·4-s − 5-s + 3.52·6-s + 1.52·7-s + 3.06·8-s + 5.42·9-s + 1.21·10-s + 4.90·11-s + 1.52·12-s − 6.42·13-s − 1.85·14-s + 2.90·15-s − 2.67·16-s + 2.14·17-s − 6.59·18-s + 2.28·19-s + 0.525·20-s − 4.42·21-s − 5.95·22-s + 6.90·23-s − 8.90·24-s + 25-s + 7.80·26-s − 7.05·27-s − 0.801·28-s + ⋯
L(s)  = 1  − 0.858·2-s − 1.67·3-s − 0.262·4-s − 0.447·5-s + 1.43·6-s + 0.576·7-s + 1.08·8-s + 1.80·9-s + 0.384·10-s + 1.47·11-s + 0.440·12-s − 1.78·13-s − 0.495·14-s + 0.749·15-s − 0.668·16-s + 0.520·17-s − 1.55·18-s + 0.523·19-s + 0.117·20-s − 0.966·21-s − 1.26·22-s + 1.43·23-s − 1.81·24-s + 0.200·25-s + 1.53·26-s − 1.35·27-s − 0.151·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 145 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(145\)    =    \(5 \cdot 29\)
Sign: $1$
Analytic conductor: \(1.15783\)
Root analytic conductor: \(1.07602\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 145,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3815435100\)
\(L(\frac12)\) \(\approx\) \(0.3815435100\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
29 \( 1 - T \)
good2 \( 1 + 1.21T + 2T^{2} \)
3 \( 1 + 2.90T + 3T^{2} \)
7 \( 1 - 1.52T + 7T^{2} \)
11 \( 1 - 4.90T + 11T^{2} \)
13 \( 1 + 6.42T + 13T^{2} \)
17 \( 1 - 2.14T + 17T^{2} \)
19 \( 1 - 2.28T + 19T^{2} \)
23 \( 1 - 6.90T + 23T^{2} \)
31 \( 1 - 1.71T + 31T^{2} \)
37 \( 1 - 7.95T + 37T^{2} \)
41 \( 1 + 3.37T + 41T^{2} \)
43 \( 1 + 1.09T + 43T^{2} \)
47 \( 1 - 12.7T + 47T^{2} \)
53 \( 1 - 3.37T + 53T^{2} \)
59 \( 1 + 3.18T + 59T^{2} \)
61 \( 1 + 2.42T + 61T^{2} \)
67 \( 1 + 1.09T + 67T^{2} \)
71 \( 1 - 3.57T + 71T^{2} \)
73 \( 1 - 14.1T + 73T^{2} \)
79 \( 1 - 0.341T + 79T^{2} \)
83 \( 1 + 7.33T + 83T^{2} \)
89 \( 1 - 2.94T + 89T^{2} \)
97 \( 1 + 18.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59889341874157172316364290781, −11.84127899426195835980779037495, −11.11985641977643052490891369311, −10.05112801840758409875683290289, −9.183953923146848784980743704473, −7.66002410997190104707088272811, −6.82354515012236606006550540741, −5.21956015843479892963528989634, −4.41056704456086201123501797565, −0.979186166300438415758081519940, 0.979186166300438415758081519940, 4.41056704456086201123501797565, 5.21956015843479892963528989634, 6.82354515012236606006550540741, 7.66002410997190104707088272811, 9.183953923146848784980743704473, 10.05112801840758409875683290289, 11.11985641977643052490891369311, 11.84127899426195835980779037495, 12.59889341874157172316364290781

Graph of the $Z$-function along the critical line