L(s) = 1 | + 2.35·2-s − 1.56·3-s + 3.53·4-s + 5-s − 3.69·6-s − 3.58·7-s + 3.60·8-s − 0.537·9-s + 2.35·10-s − 2.48·11-s − 5.54·12-s − 1.25·13-s − 8.42·14-s − 1.56·15-s + 1.40·16-s − 1.26·18-s − 3.63·19-s + 3.53·20-s + 5.62·21-s − 5.83·22-s − 8.83·23-s − 5.65·24-s + 25-s − 2.96·26-s + 5.55·27-s − 12.6·28-s + 8.75·29-s + ⋯ |
L(s) = 1 | + 1.66·2-s − 0.906·3-s + 1.76·4-s + 0.447·5-s − 1.50·6-s − 1.35·7-s + 1.27·8-s − 0.179·9-s + 0.743·10-s − 0.748·11-s − 1.59·12-s − 0.349·13-s − 2.25·14-s − 0.405·15-s + 0.352·16-s − 0.297·18-s − 0.833·19-s + 0.789·20-s + 1.22·21-s − 1.24·22-s − 1.84·23-s − 1.15·24-s + 0.200·25-s − 0.580·26-s + 1.06·27-s − 2.39·28-s + 1.62·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1445 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - T \) |
| 17 | \( 1 \) |
good | 2 | \( 1 - 2.35T + 2T^{2} \) |
| 3 | \( 1 + 1.56T + 3T^{2} \) |
| 7 | \( 1 + 3.58T + 7T^{2} \) |
| 11 | \( 1 + 2.48T + 11T^{2} \) |
| 13 | \( 1 + 1.25T + 13T^{2} \) |
| 19 | \( 1 + 3.63T + 19T^{2} \) |
| 23 | \( 1 + 8.83T + 23T^{2} \) |
| 29 | \( 1 - 8.75T + 29T^{2} \) |
| 31 | \( 1 + 2.44T + 31T^{2} \) |
| 37 | \( 1 + 4.60T + 37T^{2} \) |
| 41 | \( 1 - 4.32T + 41T^{2} \) |
| 43 | \( 1 - 7.54T + 43T^{2} \) |
| 47 | \( 1 + 11.3T + 47T^{2} \) |
| 53 | \( 1 - 5.69T + 53T^{2} \) |
| 59 | \( 1 + 4.47T + 59T^{2} \) |
| 61 | \( 1 - 0.242T + 61T^{2} \) |
| 67 | \( 1 + 7.23T + 67T^{2} \) |
| 71 | \( 1 + 1.83T + 71T^{2} \) |
| 73 | \( 1 - 5.47T + 73T^{2} \) |
| 79 | \( 1 - 9.03T + 79T^{2} \) |
| 83 | \( 1 - 7.31T + 83T^{2} \) |
| 89 | \( 1 + 2.19T + 89T^{2} \) |
| 97 | \( 1 + 9.82T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.347472902542934084762386599284, −8.123797437890455498772618825528, −6.85646435728702187369847103230, −6.28663815013497734374421743058, −5.81912820527080411484022016613, −5.03767385923318730119680776805, −4.14764693847290789451343610685, −3.08130702326072392108494569746, −2.30607110524205906657832557871, 0,
2.30607110524205906657832557871, 3.08130702326072392108494569746, 4.14764693847290789451343610685, 5.03767385923318730119680776805, 5.81912820527080411484022016613, 6.28663815013497734374421743058, 6.85646435728702187369847103230, 8.123797437890455498772618825528, 9.347472902542934084762386599284